The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
Chaff has also written about his book of Mormon that is not true to say this but it doesn't have the
Answer:
The ratio of T2 to T1 is 1.0
Explanation:
The gravitational force exerted on each sphere by the sun is inversely proporational to the square of the distance between the sun and each of the spheres.
Provided that the two spheres have the same radius r, the pressure of solar radiation too, is inversely proportional to the square of the distance of each sphere from the sun.
Let F₁ and F₂ = gravitational force of the sun on the first and second sphere respectively
P₁ and P₂ = Pressure of solar radiation on the first and second sphere respectively
M = mass of the Sun
m = mass of the spheres, equal masses.
For the first sphere that is distance R from the sun.
F₁ = (GmM/R²)
P₁ = (k/R²)
T₁ = (F₁/P₁) = (GmM/k)
For the second sphere that is at a distance 2R from the sun
F₂ = [GmM/(2R)²] = (GmM/4R²)
P₂ = [k/(2R)²] = (k/4R²)
T₂ = (F₂/P₂) = (GmM/k)
(T₁/T₂) = (GmM/k) ÷ (GmM/k) = 1.0
Hope this Helps!!!
Answer
Voltage is how fast the electrons flow. Power is a use of voltage times the volumes of electrons. The higher the voltage the more power you have with the same current.
We because it is really important that we recognize how we are feeling to make important decisions in life