Here is the full question
Suppose there are 10,000 civilizations in the Milky Way Galaxy. If the civilizations were randomly distributed throughout the disk of the galaxy, about how far (on average) would it be to the nearest civilization?
(Hint: Start by finding the area of the Milky Way's disk, assuming that it is circular and 100,000 light-years in diameter. Then find the average area per civilization, and use the distance across this area to estimate the distance between civilizations.)
Answer:
1000 light-years (ly)
Explanation:
If we go by the hint; The area of the disk can be expressed as:

where D = 100, 000 ly
Let's divide the Area by the number of civilization; if we do that ; we will be able to get 'n' disk that is randomly distributed; so ;

The distance between each disk is further calculated by finding the radius of the density which is shown as follows:



replacing d =
in the equation above; we have:




The distance (s) between each civilization = 
= 2 (500 ly)
= 1000 light-years (ly)
Hey There!
Your answer is on the inside bends!
When rocks are deposition on the bottom of the river pressure can cause the rock to break down in sentiments!
If you need anymore help with your work feel free to ask me!
Hope this Helps!
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
<u>Explanation:</u>
Given data,
E= 3 ×10 ⁶ Δx=0.06/100
We have to find the minimum potential difference
E= -ΔV/Δx
ΔV=- E × Δx
ΔV =-3 ×10 ⁶ . 0.06/100
ΔV=-1800 V
The minimum potential difference must be supplied by the ignition circuit to start a car is -1800 V
1 gallon has 0.133681 cubic feet