Answer:
![F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)


Explanation:
I attached an image below with the scheme of the system:
The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:
![F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}]](https://tex.z-dn.net/?f=F_T%3DF_Q%2BF_%7B3Q%7D%2BF_%7B4Q%7D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B%28Q%29%282Q%29%7D%7BR_1%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B%283Q%29%282Q%29%7D%7BR_2%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B%284Q%29%282Q%29%7D%7BR_3%7D%5Bcos%5Ctheta%20%5Chat%7Bi%7D%2Bsin%5Ctheta%20%5Chat%7Bj%7D%5D)
the distances R1, R2 and R3, for a square arrangement is:
R1 = L
R2 = L
R3 = (√2)L
θ = 45°
![F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]](https://tex.z-dn.net/?f=F_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5Bcos%2845%5C%C2%B0%29%5Chat%7Bi%7D%2Bsin%2845%5C%C2%B0%29%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3Dk%5Cfrac%7B2Q%5E2%7D%7BL%7D%5Chat%7Bi%7D%2Bk%5Cfrac%7B6Q%5E2%7D%7BL%7D%5Chat%7Bj%7D%2Bk%5Cfrac%7B8Q%5E2%7D%7B%5Csqrt%7B2%7DL%7D%5B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bi%7D%2B%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%5Chat%7Bj%7D%5D%5C%5C%5C%5CF_T%3D6k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bi%7D%2B10k%5Cfrac%7BQ%5E2%7D%7BL%7D%5Chat%7Bj%7D%3D2k%5Cfrac%7BQ%5E2%7D%7BL%7D%5B3%5Chat%7Bi%7D%2B5%5Chat%7Bj%7D%5D)
and the magnitude is:

the direction is:

Modelling the structure of the atom is important because modeling replaces the real system with something similar but easier to examine. Option B
<h3>What is modeling?</h3>
A model is a representation of reality. We know that a model could help us to recreate reality in a manner that we could be able to relate fully with it. A model could be used also a means of explanation.
The atomic models that we have usually help us to understand more abut the atom. Therefore, modelling the structure of the atom is important because modeling replaces the real system with something similar but easier to examine. Option B
Learn more about modelling the atom:brainly.com/question/1596638
#SPJ1
When you add more water to the balloon, it makes it heavier. Therefore it would weigh the balloon down ( increasing mass) and increasing the energy to plummet down. So the answer is B.
Explanation:
The reading on the scale is
W = m(g + a)
= (77 kg)(9.8 m/s^2 + 2 m/s^2)
= 908.6 N
Answer:
I'm pretty sure its B and C
Explanation:
B bc the weight is gravitational pull x mass so when the object has same mass the weight is smaller on moon
C bc mass is the same - you can't change it