Answer:
0.144 kg of water
Explanation:
From Raoult's law,
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 423 mmHg ÷ 528.8 mmHg = 0.8
Let the moles of solvent (water) be y
Moles of solute (C3H8O3) = 2 mole
Total moles of solution = moles of solvent + moles of solute = (y + 2) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.8 = y/(y + 2)
y = 0.8(y + 2)
y = 0.8y + 1.6
y - 0.8y = 1.6
0.2y = 1.6
y = 1.6/0.2 = 8
Moles of solvent (water) = 8 mol
Mass of water = moles of water × MW = 8 mol × 18 g/mol = 144 g = 144/1000 = 0.144 kg
Answer:
B
Explanation:
The question does not specify any outside forces that could slow down the ball horizontally. There fore the ball does not accelerate or decelerate horizontally. Therefore, a = 0m/s2
Answer:
Explanation:
i )
In a conservative field like gravitational field , loss of potential energy or work done , depends upon the initial and final point and not the manner in which 2 nd point has been reached . Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
Hence , due to increased mass of larger child , his kinetic energy will be greater .
ii ) Since the initial and final point is same in both the cases of straight and curved path , final velocity will remain same for both of them .
iii ) Smaller child undergo free fall , therefore , he will fall with acceleration g . The larger child falls on curved path . So , he will have only a component of
vertical g at any moment . hence average acceleration will be less.
Answer:
A. "The electric force vector is along the direction of the electric field, whereas the magnetic force vector is perpendicular to the magnetic field."
D. "The kinetic energy of a charged particle moving in an electric field is not altered, whereas the kinetic energy of a charged particle moving in a magnetic field is either increased or decreased, depending on the direction of motion."
Explanation:
Electric fields originate from voltage differences, the higher the voltage, the stronger the resulting field. Magnetic fields originate from electric currents, a stronger current results in a stronger field. An electric field exists even if there is no current. When there is current, the magnitude of the magnetic field will change with power consumption, but the strength of the electric field will remain the same.