Answer:
The car C has KE = 100, PE = 0
Explanation:
The principle of conservation of energy states that although energy can be transformed from one form to another, the total energy of the given system remains unchanged.
The energy that a body possesses due to its motion or position is known as mechanical energy. There are two kinds of mechanical energy: kinetic energy, KE and potential energy, PE.
Kinetic energy is the energy that a body possesses due to its motion.
Potential energy is the energy a body possesses due to its position.
From the principle of conservation of energy, kinetic energy can be transformed into potential energy and vice versa, but in all cases the energy is conserved or constant.
In the diagram above, the cars at various positions of rest or motion are transforming the various forms of mechanical energy, but the total energy is conserved at every point. At the point A, energy is all potential, at B, it is partly potential partly kinetic energy, However, at the point C, all the potential energy has been converted to kinetic energy. At D, some of the kinetic energy has been converted to potential energy as the car climbs up the hill.
Therefore, the car C has KE = 100, PE = 0
Answer:
Beacause he has more grocceries and food heavy
Explanation:
The final momentum of the body is equal to 120 Kg.m/s.
<h3>What is momentum?</h3>
Momentum can be described as the multiplication of the mass and velocity of an object. Momentum is a vector quantity as it carries magnitude and direction.
If m is an object's mass and v is its velocity then the object's momentum p is: . The S.I. unit of measurement of momentum is kg⋅m/s, which is equivalent to the N.s.
Given the initial momentum of the body = Pi = 20 Kg.m/s
The force acting on the body, Pf = 25 N
The time, Δt = 4-0 = 4s
The Force is equal to the change in momentum: F ×Δt = ΔP
25 × 4 = P - 20
100 = P - 20
P = 100 + 20 = 120 Kg.m/s
Therefore, the final momentum of a body is 120 Kg.m/s.
Learn more about momentum, here:
brainly.com/question/4956182
#SPJ1
Answer:
a).
b).
c.) It must be at the bottom
Explanation:
Given:
Volume flow
Well depp
a.
The power output of the pum
b.
The pressure of difference the pum
Δ
Δ
c.
It must be at the bottom since the pressure difference is greater than atmospheric pressure, so it wouldn't be able to lift the water all the way