There is no movement in line C and the greatest velocity occurs at line D. The answers are:
1. 0.5 m/s
2. 0.25 m/s
3. 14m and -2m
4. -1 m/s
<h3>
What is Position - time Graph ?</h3>
Position time graph is the graph of distance or displacement against time. The slope of the graph is velocity.
The given positions of four objects as a function of time are shown
on the graph to the right.
1.) The velocity of object A will be the slope m of the line A.
Slope m = Δx / Δt
m = (4 - 0) / (8 - 0)
m = 4 / 8
m = 0.5 m/s
Velocity at A = 0.5 m/s
2.) The average velocity of object B will be the slope m of the line B.
Slope m = Δx / Δt
m = (6 - 4) / (8 - 0)
m = 2 / 8
m = 0.25 m/s
The average velocity of object B is 0.25s
3.) The object moved a total distance during the first eight seconds will be 4m for A, 2m for B, and 8m for D
Total distance = 4 + 2 + 8 = 14m
It’s net displacement during the same time will be 2. That is,
Displacement = 8 - 6 = -2m
4.) The greatest speed occurred at line D. The velocity of the object moving at the greatest speed will be the slope of the line D
V = -Δx / Δt
V = -8/8
V = -1 m/s
Therefore, there is no movement in line C and the greatest velocity occurs at line D.
Learn more about velocity time graph here :brainly.com/question/769606
#SPJ1
So we want to know what changes inside the multimeter when we change the voltage range from 200 V to 20 V, by what factor and does it increase or decrease. What we want when trying to measure the voltage with a multimeter is that a minimal current passes trough the mulitmeter so when we change the voltage range, we decrease the resistance by a factor of 10 because the voltage is decreased by a factor of 10.
Answer:
Force can also be described intuitively as a push or a pull. ... It is measured in the SI unit of newtons and represented by the symbol F. The original form of Newton's second law states that the net force acting upon an object is equal to the rate at which its momentum changes with time.
Explanation:
hope this helps : )
Answer:
(B) The total internal energy of the helium is 4888.6 Joules
(C) The total work done by the helium is 2959.25 Joules
(D) The final volume of the helium is 0.066 cubic meter
Explanation:
(B) ∆U = P(V2 - V1)
From ideal gas equation, PV = nRT
T1 = 21°C = 294K, V1 = 0.033m^3, n = 2moles, V2 = 2× 0.033=0.066m^3
P = nRT ÷ V = (2×8.314×294) ÷ 0.033 = 148140.4 Pascal
∆U = 148140.4(0.066 - 0.033) = 4888.6 Joules
(C) P2 = P1(V1÷V2)^1.4 =148140.4(0.033÷0.066)^1.4= 148140.4×0.379=56134.7 Pascal
Assuming a closed system
(C) Wc = (P1V1 - P2V2) ÷ 0.4 = (148140.4×0.033 - 56134.7×0.066) ÷ 0.4 = (4888.6 - 3704.9) ÷ 0.4 = 1183.7 ÷ 0.4 = 2959.25 Joules
(C) Final volume = 2×initial volume = 2×0.033= 0.066 cubic meter
Answer:
B. 1200
Explanation:
60 sec in one min in 2 min there will be 120 sec. 10x120=1200