1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hitman42 [59]
3 years ago
6

Two charges, each 9 µC, are on the x axis, one at the origin and the other at x = 8 m. Find the electric field on the x axis at

each of the following locations.
(a) x =-2 m N/C i
(b) x = 2 m
(c) x 6 m N/C
(d) x = 10 m N/C
(e) At what point on the x axis is the electric field zero?

Physics
2 answers:
bearhunter [10]3 years ago
6 0

a) Electric field at x = -2 m: 21,060 N/C to the left

b) Electric field at x = 2 m: 18,000 N/C to the right

c) Electric field at x = 6 m: 18,000 N/C to the left

d) Electric field at x = 10 m: 21,060 N/C to the right

e) Electric field is zero at x = 4 m

Explanation:

a)

The electric field produced by a single-point charge is given by

E=k\frac{q}{r^2}

where:

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the magnitude of the charge

r is the distance from the charge

Here we have two charges of

q=9\mu C = 9\cdot 10^{-6} C

each. Therefore, the net electric field at any point in the space will be given by the vector sum of the two electric fields. The two charges are both positive, so the electric field points outward of the charge.

We call the charge at x = 0 as q_0 , and the charge at x = 8 m as q_8.

For a point located at x = -2 m, both the fields E_0 and E_8 produced by the two charges point to the left, so the net field is the sum of the two fields in the negative direction:

E=-\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=-kq(\frac{1}{(-2)^2}+\frac{1}{(8-(-2))^2})=-21060 N/C

b)

In this case, we are analyzing a point located at

x = 2 m

The field produced by the charge at x = 0 here points to the right, while the field produced by the charge at x = 8 m here points to the left. Therefore, the net field is given by the difference between the two fields, so:

E=\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(2)^2}-\frac{1}{(8-2)^2})=18000 N/C

And since the sign is positive, the direction is to the right.

c)

In this case, we are considering a point located at

x = 6 m

The field produced by the charge at x = 0 here points to the right again, while the field produced by the charge at x = 8 m here points to the left. Therefore, the net field is given by the difference between the two fields, as before; so:

E=\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(6)^2}-\frac{1}{(8-6)^2})=-18000 N/C

And the negative sign indicates that the electric field in this case is towards the left.

d)

In this case, we are considering a point located at

x = 10 m

This point is located to the right of both charges: therefore, the field produced by the charge at x = 0 here points to the right, and the field produced by the charge at x = 8 m here points to the right as well. Therefore, the net field is given by the sum of the two fields:

E=\frac{kq_0}{(0-x)^2}+\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(10)^2}+\frac{1}{(8-(10))^2})=21060 N/C

And the positive sign means the field is to the right.

e)

We want to find the point with coordinate x such that the electric field at that location is zero. This point must be in between x = 0 and x = 8, because that is the only region where the two fields have opposite directions. Therefore, te net field must be

E=\frac{kq_0}{(0-x)^2}-\frac{kq_8}{(8-x)^2}=kq(\frac{1}{(-x)^2}-\frac{1}{(8-x)^2})=0

This means that we have to solve the equation

\frac{1}{x^2}-\frac{1}{(8-x)^2}=0

Re-arranging it,

\frac{1}{x^2}-\frac{1}{(8-x)^2}=0\\\frac{(8-x)^2-x^2}{x^2(8-x)^2}=0

So

(8-x)^2-x^2=0\\64+x^2-16x-x^2=0\\64-16x=0\\64=16x\\x=4 m

So, the electric field is zero at x = 4 m, exactly halfway between the two charges (which is reasonable, because the two charges have same magnitude)

Learn more about electric fields:

brainly.com/question/8960054

brainly.com/question/4273177

#LearnwithBrainly

Neko [114]3 years ago
3 0

Answer:

(a) E=-21,060 N/C

(b) E=18,000 N/C

(c) E=-18,000 N/C

(d) E= 22,500 N/C

(e) x=4 m

Explanation:

<u>Electric Field </u>

The electric field generated by a point charge Q at a distance d is given by

\displaystyle E=\frac{k\ q}{r^2}

where k is the Coulomb's constant, q is the value of the charge and r is the distance.

The electric field is a vector and its direction is pushing away from the positive charge and pulling to the negative charge.

Please refer to the image below to better find directions and magnitudes of the calculations

(a) At x=-2, both charges push to the left, making the total electric field be negative and additive

Charge 1 is at 2 m

\displaystyle E_1=-\frac{9\times 10^9\ 9\times 10^{-6}}{2^2}=-20,250\ N/c

Charge 2 is at 10 m

\displaystyle E_2=-\frac{9\times 10^9\ 9\times 10^{-6}}{10^2}=-810\ N/c

Total field:

E=-20,250-810=-21,060\ N/c

(b) At x=2 m, q1 pushes to the right and q2 pushes to the left.

\displaystyle E_1=\frac{9\times 10^9\ 9\times 10^{-6}}{2^2}=20,250\ N/c

\displaystyle E_2=-\frac{9\times 10^9\ 9\times 10^{-6}}{6^2}=-2,250\ N/c

E=E_1+E_2

E=18,000\ N/c

(c) At x=6 m, q1 pushes to the right and q2 pushes to the left.

\displaystyle E_1=\frac{9\times 10^9\ 9\times 10^{-6}}{6^2}=2,250\ N/c

\displaystyle E_2=\frac{9\times 10^9\ 9\times 10^{-6}}{2^2}=-20,250\ N/c

E=2,250\ N/c-20,250\ N/c

E=-18,000\ N/c

(d) At x=10 m, both charges push to the right

\displaystyle E_1=\frac{9\times 10^9\ 9\times 10^{-6}}{10^2}=810\ N/c

\displaystyle E_2=\frac{9\times 10^9\ 9\times 10^{-6}}{2^2}=20,250\ N/c

E=2,250\ N/c+20,250\ N/c

E=22,500\ N/c

(e) We must find a point where

E_1=E_2

pointing in opposite directions. Let's call x the distance from the origin where that happens, then

\displaystyle \frac{k\ q}{x^2}=\frac{k\ q}{(8-x)^2}

Simplifying

x^2=(8-x)^2

It has only one solution

x=4

So at x=4 both fields are equal and opposite, so the total field is zero

You might be interested in
Suppose astronomers find an earthlike planet that is twice the size of Earth (that is, its radius is twice the radius of Earth).
JulijaS [17]

Answer:

4 times the mass of Earth

Explanation:

M_1 = Mass of Earth

M_2 = Mass of the other planet

r = Radius of Earth

2r = Radius of the other planet

m = Mass of object

The force of gravity on an object on Earth is

F=\frac{GM_1m}{r^2}

The force of gravity on an object on the other planet is

F=\frac{GM_2m}{(2r)^2}

As the forces are equal

\frac{GM_1m}{r^2}=\frac{GM_2m}{(2r)^2}\\\Rightarrow M_1=\frac{M_2}{4}\\\Rightarrow M_2=4M_1

So, the other planet would have 4 times the mass of Earth

6 0
3 years ago
What are the conditions required for a rigid body to be in translational equilibrium?
kolezko [41]

Answer:

Explanation:

The condition for translation equilibrium is that is that the net force acting on the body must be zero.

The sum all the external forces acting on the body in horizontal as well as vertical direction must be zero.

∑Fₓ=0  and ∑Fy=0

now if the above two condition are satisfied the rigid body is said to be in  translational equilibrium.

God bless... hope this help to clear your doubt.

5 0
3 years ago
Because scientists cannot actually precisely measure a process like soil erosion over the entire planet, they must _____.
Pani-rosa [81]

Your answer is C. I hope this helps you.

4 0
3 years ago
উপরোক্ত ঘটনা ভরবেগের সংরক্ষণ সূত্র সমর্থন করে কি? গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও।
ArbitrLikvidat [17]

Answer:

truelol

Explanation:

same

রোক্ত ঘটনা ভরবেগের সংরক্ষণ সূত্র সমর্থন করে কি? গাণিতিক বিশ্লেষণের মাধ্যমে মতামত দাও।

3 0
3 years ago
2 examples of mechanical waves would be: *
vovikov84 [41]

C. sound waves and water waves

5 0
3 years ago
Read 2 more answers
Other questions:
  • Two groups of students were tested to compare their speed working math problems,Each group was given the same problems.One group
    6·1 answer
  • A small hot-air balloon is filled with 1.02×106 l of air (d = 1.20 g/l). as the air in the balloon is heated, it expands to 1.09
    13·2 answers
  • What is the cost of conserved energy for compact fluorescent lighting?
    15·1 answer
  • Imagine Two Artificial Satellites Orbiting Earth At The Same Distance. One Satellite Has A Greater Mass Than The Other One? Whic
    8·1 answer
  • You are given an unknown solid substance of mass 500 g and you want to estimate its specific heat. unfortunately, you don’t have
    15·1 answer
  • A transformer connected to a 110–(V) (rms) ac line is to supply 10.0 (V) (rms) to a portable electronic device. The load resista
    10·1 answer
  • A 5-kg ball collides inelastically head-on with a 10-kg ball, which is initially stationary. Which of the following statements i
    15·1 answer
  • An athlete swings a ball, connected to the end of a chain, in a horizontal circle. The athlete is able to rotate the ball at the
    11·1 answer
  • A steel tank of weight 600 lb is to be accelerated straight upward at a rate of 1.5 ft/sec2. Knowing the magnitude of the force
    11·1 answer
  • How is the brightness of the star related to how quickly it pulses?​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!