Answer:
See explanation
Explanation:
Electro negativity refers to the ability of an atom in a molecule to attract the shared pair of electrons of a bond closer to itself.
In a molecule, the polarity of bonds is determined by the relative electro negativity of the bonding atoms. If the difference in electro negativity between the atoms in a bond is significant, such a bond is polar in nature e.g H-Cl, H-Br, C-F, etc.
However, the occurrence of polar bonds in a molecule alone does not guarantee the polarity of the molecule. The polarity of a molecule also depends on the shape of the molecule since dipole moment is a vector quantity.
A molecule is polar when the resultant dipole moment which is determined by the shape of the molecule is non zero.
For instance, CO2 contains two polar C-O bonds but the molecule is non polar because the two dipole moments cancel out. Also, symmetrical molecules are nonpolar irrespective of the presence of polar bonds in the molecule.
the law of thermodyanamic is the restatement of the law of conservation of energy
Answer:
Pressure, P = 67.57 atm
Explanation:
<u>Given the following data;</u>
- Volume = 0.245 L
- Number of moles = 0.467 moles
- Temperature = 159°C
- Ideal gas constant, R = 0.08206 L·atm/mol·K
<u>Conversion:</u>
We would convert the value of the temperature in Celsius to Kelvin.
T = 273 + °C
T = 273 + 159
T = 432 Kelvin
To find the pressure of the gas, we would use the ideal gas law;
PV = nRT
Where;
- P is the pressure.
- V is the volume.
- n is the number of moles of substance.
- R is the ideal gas constant.
- T is the temperature.
Making P the subject of formula, we have;

Substituting into the formula, we have;


<em>Pressure, P = 67.57 atm</em>