if the velocity of the car reduces from 70km/h to 50km/h then the speed of the car will be equal to the speed of the lorry...
thus the relative velocity will be 0
This is a sneaky trick question, to help you discover whether you know
one of the differences between velocity and speed.
=======================================
If you make a list of the distances and directions, and ignore the times,
you find these:
4 - west, (3 + 1) - east . . . . . zero in the east/west direction
1.5 - north, 1.5 - south . . . . . zero in the north/south direction
This jogger went out, had a nice jog around the neighborhood,and ended up exactly where he started.
Average velocity = (distance between start point and end point) / (time)
IF the question asked for average SPEED, then you would need the total distance, and divide it by the total time. But it asks for VELOCITY, and <u>that</u> only involves the straight distance between the start point and the end point, regardless of the route taken in between.
The jogger ended up exactly where he started. The distance between start and end points was zero. Average velocity is (zero) / (time) . And that fraction is going to be <em><u>Zero</u></em>, no matter how long or how short the trip was, and no matter how much time it took.
The spring-mass system moves by simple harmonic motion, where there is a continuous conversion from elastic potential energy to kinetic energy and viceversa.
The total mechanical energy of the system at any moment of the motion is

where the first term U is the elastic potential energy, with k being the spring constant and x the displacement of the spring with respect to its rest position, and the second term K is the kinetic energy, with m being the mass of the object attached to the spring and v its speed.
The total energy E is constant during the oscillation of the spring, but the values of U and K change. In fact, when the displacement of the spring is maximum (x is maximum), then all the energy is potential energy U, because the speed of the object is zero (it's the moment when the mass is changing direction). On the contrary, when the mass crosses the equilibrium position (rest position) of the spring, then the potential energy is zero (U=0) because the displacement is zero (x=0), and so all the energy is kinetic energy of the motion, and so K is maximum.
Well, those are good ones. Now how about a <u><em>thermometer</em></u> to <em>measure the temperature</em> ?
I don’t know if I’m completely right but Elements are arranged from left to right due to their atomic number