Answer:
2.1 rad/s
Explanation:
Given that,
Mass of a tether ball, m = 0.546 kg
Length of a rope, l = 4.56 m
The maximum tension the rope can withstand before breaking is 11.0 N
We need to find the maximum angular speed of the ball. Let v is the linear velocity. The maximum tension is balanced by the centripetal force acting on it. It can be given by :

Let
is the angular speed of the ball. The relation between the angular speed and angular velocity is given by :

So, the maximum angular speed of the ball is 2.1 rad/s.
Answer:
is always negative
Explanation:
Air resistance is a non-conservative force it opposes the motion of an object.It is a force that is always directed opposite to the displacement.
Answer:α = 1.00 rad/s², τ = 90.0 N•m, KEr = 1.12 kJ
Explanation:
m = 795/9.81 = 81.0 kg
ω₁ = 47.79 rev/min(2π rad/rev) / (60 s/min) = 5.00 rad/s
α = (ω₁ - ω₀)/τ = (5.00 - 0.00)/5.00 = 1.00 rad/s²
I = ½mR² = ½(81.0)(1.49²) = 90.0 kg•m²
τ = Iα = 90.0(1.00) = 90.0 N•m
KEr = ½Iω² = ½(90.0)5.00² = 1,124.477 ≈ 1.12 kJ