Answer:
A) Three hole punch and either a layered plastic or paper
B) Identify the lengths involved ,
Length of input arm / length of output arm = L1/ L2
Explanation:
<u>a) Materials involved includes :</u>
Three hole punch and either a layered plastic or paper
Identify the forces acting on the three-hole punch which are Input and output forces
Identify the points where they act
<u>B) procedures involved </u>
The mechanical advantage = output force / input force
step one: Identify the lengths involved
assuming no friction or relatively small friction \
mechanical advantage can be calculated as : Length of input arm / length of output arm = L1/ L2
Answer:
Superconducting materials can transport electrons with no resistance, and hence release no heat, sound, or other energy forms. Superconductivity occurs at a specific material's critical temperature (Tc). As temperature decreases, a superconducting material's resistance gradually decreases until it reaches critical temperature. At this point resistance drops off, often to zero, as shown in the graph at right.
Explanation:
The answer is the less dense plate slides over the denser plate.
The weights in newtowns for the given masses are
<span> masses 22.1, 33.5, 41.3, 59.2, 78
weights 216.58N 328.3N 404.74N 580.16N 764.4N
e.g, for m=22.1kg, W=22.1kgx9.8N/kg =216.58N</span>
Motion of a ball thrown by a person upwards and caught after some time is an example of motion in which displacement of the particle is zero but acceleration is not zero in journey.
The displacement of the ball is zero because the starting and end point of the motion are same, i.e, the person's hands.During its motion, the acceleration of ball is constant and non zero called as acceleration due to gravity, g= -9.8 m/s². The velocity of ball is continuously changing. It first decreases during the upward motion of the ball and then increases during the downward journey.The acceleration remains constant and non zero all the time.