Hello!
First one we can use that PE=mgh so we have
4.37*10^5J/(9.12*10^3kg*9.80m/s^2)= 4.89m
Second one we can use Newton’s Second Law
F=ma and in this case F=mg so we have
g= 3.28*10^-2N/6*10^-3kg = 5.47m/s^2
Hope this helps. Any questions please ask. Thank you.
Answer:
0.34 m
Explanation:
From the question,
v = λf................ Equation 1
Where v = speed of sound, f = frequency, λ = Wave length
Make λ the subject of the equation
λ = v/f............... Equation 2
Given: v = 340 m/s, f = 500 Hz.
Substitute these values into equation 2
λ = 340/500
λ = 0.68 m
But, the distance between a point of rarefaction and the next compression point, in the resulting sound is half wave length
Therefore,
λ/2 = 0.68/2
λ/2 = 0.34 m
Hence, the distance between a point of rarefaction and the next compression point, in the resulting sound is 0.34 m
During freezing, energy is released by the mass of water without change in temperature. Such energy will also be required if the same mass of water has to be melted.
Then,
Number of moles = mass/molar mass = 253/18.02 =14.04 moles
Energy released = moles*molar enthalpy of fusion = 14.04*6.008 = 84.35 kJ
Answer:
Wind turbines are a source of clean renewable energy, but some people who live nearby describe the shadow flicker, the audible sounds and the subaudible sound pressure levels as "annoying." They claim this nuisance negatively impacts their quality of life