<h2>
Person must have 8.18 m/s to catch the ball</h2>
Explanation:
Consider the vertical motion of ball
We have equation of motion s = ut + 0.5at²
Initial velocity, u = 12 m/s
Acceleration, a = -9.81 m/s²
Displacement, s = -25 m
Substituting
-25 = 12 x t + 0.5 x -9.81 x t²
4.905 t² -12t - 25 = 0
t = 3.79 sec
Ball hits ground after 3.79 seconds.
So person need to cover 31 m in 3.79 seconds
Consider the horizontal motion of person
We have equation of motion s = ut + 0.5at²
Initial velocity, u = ?
Acceleration, a = 0 m/s²
Displacement, s = 31 m
Time, t = 3.79 seconds
Substituting
31 = u x 3.79 + 0.5 x 0 x 3.71²
u = 8.18 m/s
Person must have 8.18 m/s to catch the ball
Answer: 0.4m
Explanation:
Given that:
Amplitude of wave = 2.0 m
Wavelength (λ)= ?
Frequency F = 500Hz
Speed V = 200 m/s
The wavelength is measured in metres, and represented by the symbol λ.
So, apply the formula:
Wavespeed V= Frequency F xwavelength λ
200m/s = 500Hz x λ
λ = 200m/s / 500Hz
λ = 0.4m
Thus, the wavelength is 0.4 metres
Momentum - mass in motion
P=MV
P=(15,000 kg)(2.5 m/s)
P=37 500 kg x m/s to the north
Hope this helps
Answer:
answer is 2 option because more force is applied