When a force applied to a breaker bar the torque can be calculated by multiplying the<u> length of the lever</u> by the tangential component of force on the lever.
<h3>What is torque?</h3>
Torque is the <u>rotating equivalent</u> of force in physics and mechanics. Depending on the subject of study, it is also known as the moment, moment of force, rotating force, or turning effect. It illustrates how a force can cause a change in the body's rotational motion.
Torque is given by the formula :
α = r x F ( bold letters represent vector quantities)
The S.I. unit for torque is : N - m ( Newton - meter)
<h3>How do we define 1 N-m of torque?</h3>
The newton-metre is a torque unit (also known as a moment) in the SI system. The torque produced by a one newton force applied <u>perpendicularly to the end of a one metre long</u> moment arm is known as a newton-metre.
To learn more about torque:
brainly.com/question/14970645
#SPJ4
Complete Question
How many turns are in its secondary coil, if its input voltage is 120 V and the primary coil has 210 turns.
The output from the secondary coil is 12 V
Answer:
The value is 
Explanation:
From the equation we are told that
The input voltage is 
The number of turns of the primary coil is 
The output from the secondary is 
From the transformer equation

Here
is the number of turns in the secondary coil
=> 
=>
=>
Answer:
Explanation:
Electrical energy is energy derived from electric potential energy or kinetic energy.
Or,
Electrical energy is a form of energy resulting from the flow of electric charge. Lightning, batteries and even electric eels are examples of electrical energy.People use electricity for lighting, heating, cooling, and refrigeration and for operating appliances, computers, electronics, machinery, and public transportation systems.
Hope it helped you.
Answer: Permanent magnets consist of multiple "ferromagnetic materials" I think that might be the answer, there weren't really any choices for me to choose from.
Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s