The answer should be a yes
The advantage of using a solar cooker is that it is Eco-friendly and the disadvantage is that it can be used only under certain conditions.
<h3><u>
Explanation:</u></h3>
A solar cooker is used for cooking food without having to use electricity or gas. Instead, the appliance uses heat from the sun to cook food. It is used widely in by people who travel in remote areas or go on trips. But the appliance has limitations of its own too.
ADVANTAGES
- Using it is friendly to the environment
- It can be easily assembled without expert assistance
- No compromise on the quality and taste of foo
DISADVANTAGES
- Requires sun to function and prepare food
- Cannot function in winters or monsoon when the sun isn't present
- Does not retain heat as efficiently and quickly as compared to other cooking appliances
Mass of yellow train, my = 100 kg
Initial Velocity of yellow train, = 8 m/s
mass of orange train = 200 kg
Initial Velocity of orange train = -1 m/s (since it moves opposite direction to the yellow train, we will put negative to show the opposite direction)
To calculate the initial momentum of both trains, we will use the principle of conservation of momentum which
The sum of initial momentum = the sum of final momentum
Since the question only wants the sum of initial momentum,
(100)(8) + (200)(-1) = 600 m/s
Use equations of motion to find the velocity just before it hits the floor:
<span>Vf^2 = Vi^2 + 2gx </span>
<span>Final velocity = 4.42m/s </span>
<span>Impulse is change in momentum so: </span>
<span>m(Vf - Vi) = 0.05(0 - 4.42) </span>
<span>= - 0.221 kg.m/s
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
</span>
9*
m
Explanation:
Step 1:
We are given the initial length of the Pyrex glass dish at a particular temperature and need to calculate the change in the length when the temperature changes by 120° C. The coefficient of linear expansion of Pyrex is provided.
Step 2:
Change in length = Coefficient of linear expansion * Change in temperature * Initial length
Step 3:
Coefficient of linear expansion = 3*
/°C
Change in temperature = 120°C = 120 K
Initial length = 0.25 m
Step 4:
Change in length = 3*
* 120 * 0.25 = 9*
m