Answer:
Explanation:
The rate law of a chemical reaction is given by
This law can be written for any experiment, and making the quotient between those expressions the reaction orders can be found
Between experiments 1 and 2
![\frac{-r_{A1}}{{-r}_{A2}}=\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)^\beta](https://tex.z-dn.net/?f=%5Cfrac%7B-r_%7BA1%7D%7D%7B%7B-r%7D_%7BA2%7D%7D%3D%5Cleft%28%5Cfrac%7B%5Cleft%5BNH_3%5Cright%5D_1%7D%7B%5Cleft%5BNH_3%5Cright%5D_2%7D%5Cright%29%5E%5Cbeta)
Then the expression for the calculation of 
![\beta=\frac{ln\frac{-r_{A1}}{-r_{A2}}}{ln\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)}=\frac{ln\frac{0.2130}{0.1065}}{ln\left(\frac{0.250}{0.125}\right)}](https://tex.z-dn.net/?f=%5Cbeta%3D%5Cfrac%7Bln%5Cfrac%7B-r_%7BA1%7D%7D%7B-r_%7BA2%7D%7D%7D%7Bln%5Cleft%28%5Cfrac%7B%5Cleft%5BNH_3%5Cright%5D_1%7D%7B%5Cleft%5BNH_3%5Cright%5D_2%7D%5Cright%29%7D%3D%5Cfrac%7Bln%5Cfrac%7B0.2130%7D%7B0.1065%7D%7D%7Bln%5Cleft%28%5Cfrac%7B0.250%7D%7B0.125%7D%5Cright%29%7D)
Resolving
Doing the same between experiments 3 and 4 the expression for
is
![\alpha=\frac{ln\frac{-r_{A3}}{-r_{A4}}}{ln\left(\frac{\left[BF_3\right]_3}{\left[BF_3\right]_4}\right)}=\frac{ln\frac{0.0682}{0.1193}}{ln\left(\frac{0.200}{0.350}\right)}](https://tex.z-dn.net/?f=%5Calpha%3D%5Cfrac%7Bln%5Cfrac%7B-r_%7BA3%7D%7D%7B-r_%7BA4%7D%7D%7D%7Bln%5Cleft%28%5Cfrac%7B%5Cleft%5BBF_3%5Cright%5D_3%7D%7B%5Cleft%5BBF_3%5Cright%5D_4%7D%5Cright%29%7D%3D%5Cfrac%7Bln%5Cfrac%7B0.0682%7D%7B0.1193%7D%7D%7Bln%5Cleft%28%5Cfrac%7B0.200%7D%7B0.350%7D%5Cright%29%7D)
Resolving

This means that the rate law for this reaction is
Answer:
Carboxyl, primary amine, amide, ester, and phenyl.
Explanation:
The functional groups present in the compound of aspartame are carboxyl, primary amine, amide, ester, and phenyl. Aspartame is an artificial non-saccharide sweetener which is 200 times sweeter than sucrose. This aspartame is commonly used as a sugar substitute in many foods and beverages. It has the trade names such as NutraSweet, Equal, and Canderel.
Answer: Temperature is an example of a quantitative variable
Explanation:
A quantitative variable is defined as :
- A variable that can assume a numerical value .
- It can be ordered with respect to either magnitude or dimensions.
- It is further classified into two types : interval scale and ratio scale.
Temperature comes under interval scale , because interval scale has no zero point.
For example : A 0° C Celsius does not interpret that there is no temperature.
Therefore , Temperature is an example of a quantitative variable.
Hence, the correct answer is "quantitative variable"
Tornado is a spiral of debris
Answer: An Element
Explanation:
An element is a substance that cannot be split into smaller substance. It is made up of one kind of atom and can exist either as molecules (e.g nitogen) or an atom (e.g argon).