Answer:
V₂ = 4.34 L
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 3.50 L
Initial pressure = 150 Kpa (150/101.325 = 1.5 atm)
Initial temperature = 330 K
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1.5 atm × 3.50 L × 273 K / 330 K × 1 atm
V₂ = 1433.3 atm .L. K / 330 k.atm
V₂ = 4.34 L
Oxidation is basically lose of electron..
hope it helped
Answer:
Option A; V = 2.92 L
Explanation:
If we assume a lot of things, like:
The gas is an ideal gas.
The temperature is constant.
The gas does not interchange mass with the environment.
Then we have the relation:
P*V = n*R*T = constant.
Where:
P = pressure
V = volume
n = number of moles
R = constant of the ideal gas
T = temperature.
We know that when P = 0.55 atm, the volume is 5.31 L
Then:
(0.55 atm)*(5.31 L) = constant
Now, when the gas is at standard pressure ( P = 1 atm)
We still have the relation:
P*V = constant = (0.55 atm)*(5.31 L)
(1 atm)*V = (0.55 atm)*(5.31 L)
Now we only need to solve this for V.
V = (0.55 atm/ 1 atm)*(5.31 L) = 2.92 L
V = 2.92 L
Then the correct option is A.
Every chemical equation adheres to the law of conservation of mass, which states that matter cannot be created or destroyed. ... When an equal number of atoms of an element is present on both sides of a chemical equation, the equation is balanced.
The hydrogen one because who doesnt like snoballs'