1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stealth61 [152]
3 years ago
10

If 100 J of electrical energy enter the bulb and 5 J of light energy leave the bulb, how many joules of heat energy leave the bu

lb?
Physics
1 answer:
Novay_Z [31]3 years ago
6 0

As per energy conservation we know that

Energy enter into the bulb = Light energy + Thermal energy

so now we have

energy enter into the bulb = 100 J

Light energy = 5 J

now from above equation we have

100 = 5 + heat

Heat = (100 - 5) J

Heat = 95 J


You might be interested in
An electric ceiling fan is rotating about a fixed axis with an initial angular velocity magnitude of 0.300 rev/s . The magnitude
Salsk061 [2.6K]

1) 1.2 m/s

First of all, we need to find the angular velocity of the blade at time t = 0.200 s. This is given by

\omega_f = \omega_i + \alpha t

where

\omega_i = 0.300 rev/s is the initial angular velocity

\alpha = 0.895 rev/s^2 is the angular acceleration

Substituting t = 0.200 s, we find

\omega_f = 0.300 + (0.895)(0.200)=0.479 rev/s

Let's now convert it into rad/s:

\omega_f = 2\pi \cdot 0.479 rev/s=3.01 rad/s

The distance of a point on the tip of the blade is equal to the radius of the blade, so half the diameter:

r=\frac{0.800}{2}=0.400 m

And so now we can find the tangential speed at t = 0.200 s:

v=\omega_f r =(3.01)(0.400)=1.2 m/s

2) 2.25 m/s^2

The tangential acceleration of a point rotating at a distance r from the centre of the circle is

a_t = \alpha r

where \alpha is the angular acceleration.

First of all, we need to convert the angular acceleration into rad/s^2:

\alpha = 0.895 rev/s^ \cdot 2 \pi =5.62 rad/s^2

A point on the tip of the blade has a distance of

r = 0.400 m

From the centre; so, the tangential acceleration is

a_t = (5.62)(0.400)=2.25 m/s^2

3) 3.6 m/s^2

The centripetal acceleration is given by

a=\frac{v^2}{r}

where

v is the tangential speed

r is the distance from the centre of the circle

We already calculate the tangential speed at point a):

v = 1.2 m/s

while the distance of a point at the end of the blade from the centre is

r = 0.400 m

Therefore, the centripetal acceleration is

a=\frac{1.2^2}{0.400}=3.6 m/s^2

7 0
3 years ago
A measure of the body's resting energy expenditure based on data that is collected four hours after eating or physical activity
Monica [59]
Electricity. I took something like this hope this helps :)
4 0
3 years ago
If the wave represents a sound wave, explain how increasing amplitude will affect the loudness of the sound? If we decrease the
Viktor [21]

Answer:

Explanation:

Think of a sound wave like a wave on the ocean, or lake... It's not really water moving, as much as it's energy moving through the water. Ever see something floating on the water, and notice that it doesn't come in with the wave, but rides over the top and back down into the trough between them? Sound waves are very similar to that. If you looked at a subwoofer speaker being driven at say... 50 cycles a second, you'd actually be able to see the speaker cone moving back and forth. The more power you feed into the speaker, the more it moves back and forth, not more quickly, as that would be a higher frequency, but further in and further out, still at 50 cycles per second. Every time it pushed out, it's compressing the air in front of it... the compressed air moves away from the speaker's cone, but not as a breeze or wind, but as a wave through the air, similar to a wave on the ocean

More power, more amplitude, bigger "wave", louder ( to the human ear) sound.

If you had a big speaker ( subwoofer ) and ran a low frequency signal with enough power in it, you could hold a piece of paper in front of it, and see the piece of paper move in and out at exactly the same frequency as the speaker cone. The farther away from the speaker you got, the less it'd move as the energy of the sound wave dispersed through the room.

Sound is a wave

We hear because our eardrums resonates with this wave I.e. our ear drums will vibrate with the same frequency and amplitude. which is converted to an electrical signal and processed by our brain.

By increasing the amplitude our eardrums also vibrate with a higher amplitude which we experience as a louder sound.

Of course when this amplitude is too high the resulting resonance tears our eardrums so that they can't resonate with the sound wave I.e. we become deaf

6 0
2 years ago
How many kindergarteners do you think you can take on a fight before getting tired or over powered?
yulyashka [42]
Is this a serious question ?
4 0
3 years ago
Read 2 more answers
An ideal parallel-plate capacitor consists of a set of two parallel plates of area Separated by a very small distance 푑. This ca
dolphi86 [110]

Answer:

doubled the initial value

Explanation:

Let the area of plates be A and the separation between them is d.

Let V be the potential difference of the battery.

The energy stored in the capacitor is given by

U = Q^2/2C   ...(1)

Now the battery is disconnected, it means the charge is constant.

the separation between the plates is doubled.

The capacitance of the parallel plate capacitor is inversely proportional to the distance between the plates.

C' = C/2

the new energy stored

U' = Q^2 /  2C'

U' = Q^2/C = 2 U

The energy stored in the capacitor is doubled the initial amount.

8 0
3 years ago
Other questions:
  • What are rocks formed from sediment called?
    11·2 answers
  • At t=10 ~\text{s}t=10 s, a particle is moving from left to right with a speed of 5.0 ~\text{m/s}5.0 m/s. At t=20 ~\text{s}t=20 s
    15·1 answer
  • What happens to a low-mass star after helium flash?
    6·1 answer
  • At what point in its swing is potential energy a maximum?<br> E<br> B<br> D<br> A<br> C
    13·1 answer
  • A term used to describe water that is safe to drink?
    15·1 answer
  • Colin knows that as water moves through the water cycle, condensation also takes place. Condensation occurs when water vapor coo
    7·1 answer
  • Ejection of Electrons from Hydrogen by Incident Photons Light of wavelength 80 nm is incident on a sample of hydrogen gas, resul
    5·1 answer
  • A human services professional has worked with a particular client for a couple of years. The client
    14·1 answer
  • How are babies formed?​
    13·2 answers
  • As the collision frequency of gas particles increases, the mean free path of the gas particles ____
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!