Answer: part a: 19.62m
part b: 19.62 m/s
part a: 2.83 secs
Explanation:If the air resistance is ignored then the swimmer experience free fall under gravity hence
u=0
a=9.81 m/s2
t=2 secs

s=h

Part b

Part c
now we have h=2*19.62=39.24

That would be false hope this helps
Answer:
z = 3,737 10⁵ m
Explanation:
a) As they indicate that the atmosphere behaves like an ideal gas, we can use the equation
P V = n R T
P = (n r / V) T
We replace
P = (n R / V) T₀
b) Let's apply this equation in the points
Lower
.z = 0
P₀ = 610 Pa
P₀ = (nR / V) T₀
Higher.
P = 10 Pa
P = (n R / V) T₀ e^{- C z}
We replace
P = P₀ e^{- C z}
e^{- C z} = P / P₀
C z = ln P₀ / P
z = 1 / C ln P₀ / P
Let's calculate
z = 1 / 1.1 10⁻⁵ ln (610/10)
z = 3,737 10⁵ m
Answer:
a. 11 m/s at 76° with respect to the original direction of the lighter car.
Explanation:
In this exercise, since both cars make a right angle, let's assume that the lighter car only has a horizontal velocity component (vx) and that the heavier one only has a vertical velocity component (vy). The final velocities for both components for the system can be determined as:

Assume that the lighter car has a 1kg mass and that the heavier car has a 4 kg mass.

The magnitude of the final velocity of the wreck can be found as:
![v_{f}^{2}= v_{fx}^{2}+ v_{fy}^{2}\\v_{f}=\sqrt[]{2.6^{2} + 10.4^{2}} \\v_{f}= 10.72](https://tex.z-dn.net/?f=v_%7Bf%7D%5E%7B2%7D%3D%20v_%7Bfx%7D%5E%7B2%7D%2B%20v_%7Bfy%7D%5E%7B2%7D%5C%5Cv_%7Bf%7D%3D%5Csqrt%5B%5D%7B2.6%5E%7B2%7D%20%2B%2010.4%5E%7B2%7D%7D%20%5C%5Cv_%7Bf%7D%3D%2010.72)
The final velocity has an intensity of roughly 11 m/s
As for the angle, it can be determined in respect to the lighter car (x axis) as follows:

Therefore, the wreck has a velocity with an intensity of 11 m/s at 76° with respect to the original direction of the lighter car.