Answer:
k = 52.2 N / m
Explanation:
For this exercise we are going to use the conservation of mechanical energy.
Starting point. When it is 30 m high
Em₀ = K + U = ½ m v² + m g h
Final point. Right when you hit the water
= K_{e} = ½ k x²
in this case the distance the bungee is stretched is 30 m
x = h
as they indicate that there are no losses, energy is conserved
Em₀ = Em_{f}
½ m v² + m g h = ½ k h²
k = 
let's calculate
k =
k = 52.2 N / m
Answer:
D. Calculate the area under the graph.
Explanation:
The distance made during a particular period of time is calculated as (distance in m) = (velocity in m/s) * (time in s)
You can think of such a calculation as determining the area of a rectangle whose sides are velocity and time period. If you make the time period very very small, the rectangle will become a narrow "bar" - a bar with height determined by the average velocity during that corresponding short period of time. The area is, again, the distance made during that time. Now, you can cover the entire area under the curve using such narrow bars. Their areas adds up, approximately, to the total distance made over the entire span of motion. From this you can already see why the answer D is the correct one.
Going even further, one can make the rectangular bars arbitrarily narrow and cover the area under the curve with more and more of these. In fact, in the limit, this is something called a Riemann sum and leads to the definition of the Riemann integral. Using calculus, the area under a curve (hence the distance in this case) can be calculated precisely, under certain existence criteria.
To solve this problem we could apply the concepts given by the conservation of Energy.
During the launch given in terms of kinetic energy and reaching the maximum point of the object, the potential energy of the body is conserved. However, part of all this energy is lost due to the work done by the friction force due to friction with the air, therefore

The potential and kinetic energy are conserved and are the same PE = KE and this value is equivalent to 100J, therefore

The kinetic energy will ultimately be less than 100J, so the correct answer is C.