Partial Lunar Eclipse:
A partial lunar eclipse is when the earth gets between the Sun and Moon. However, all three bodies are not in alignment meaning we are able to see some more like part of the moon's surface as it moves in route of the Earth's shadow.
Total Lunar Eclipse:
The three celestial bodies are perfectly aligned which allows for the earth to completely block the sun's rays from hitting/reaching the moon. The sun is positions is in back of the Earth which then causes the shadow of the earth to be cast on the Moon covering the moon completely. When that happens you get the phenomenon called a total lunar eclipse.
Hopefully this helped and good luck.
Answer:
0.47 N
Explanation:
Here we have a ball in motion along a circular track.
For an object in circular motion, there is a force that "pulls" the object towards the centre of the circle, and this force is responsible for keeping the object in circular motion.
This force is called centripetal force, and its magnitude is given by:

where
m is the mass of the object
is the angular velocity
r is the radius of the circle
For the ball in this problem we have:
m = 40 g = 0.04 kg is the mass of the ball
is the angular velocity
r = 30 cm = 0.30 m is the radius of the circle
Substituting, we find the force:

See the attached picture for answers
Answer:
I'm not 100% sure, but I think the answer would be the first one because there's a force pushing the object in every direction, so they would cancel eachother out and make the object stay in the same place.
Explanation:
pls vote brainliest
Explanation:
Below is an attachment containing the solution.