Answer:
he formula for the gravitational force includes the gravitational constant, which has a value . The unit of the gravitational force is Newtons (N). Fg = gravitational force between two objects ( ) G = gravitational constant ( ) m1 = mass of the first object (kg)
Explanation:
brainlist ?
Answer:
Most of UV radiation is stopped by glass & this is why you will not get sunburns behind a glass. The glass simply filters out the UV radiation that is responsible for the sunburns & protect your skins from these energetic & somewhat harmful radiation
Explanation:
Answer:
7/150
Explanation:
The following data were obtained from the question:
Object distance (u) = 75cm
Image distance (v) = 3.5cm
Magnification (M) =..?
Magnification is simply defined as:
Magnification (M) = Image distance (v)/ object distance (u)
M = v /u
With the above formula, we can obtain the magnification of the image as follow:
M = v/u
M = 3.5/75
M = 7/150
Therefore, the magnification of the image is 7/150.
E = <u>kQ</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
(r + h)²
where,
k = 9 × 10^9Nm²C^-2
Q = total charge, 300uC = 300 × 10^ -6C
r = 8 × 10^ -2m
h = 16 × 10^ -2m
then,
E = <u>9</u><u>e</u><u>9</u><u> </u><u>*</u><u> </u><u>3</u><u>0</u><u>0</u><u>e</u><u>^</u><u>-</u><u>6</u><u> </u><u> </u><u> </u><u> </u>
(8e^-2 + 16e^-2)²
E = 4687500N/C
Answer:
The correct answer is 231 Mpa i.e option a.
Explanation:
using the equation of torsion we Have

where,
= shear stress at a distance 'r' from the center
T = is the applied torque
= polar moment of inertia of the section
r = radial distance from the center
Thus we can see that if a point is located at center i.e r = 0 there will be no shearing stresses at the center due to torque.
We know that in case of a circular section the maximum shearing stresses due to a shear force occurs at the center and equals

Applying values we get
