Ng seismic and translational waves we get the law of michio kaku.
There's no such thing as "an unbalanced force".
If all of the forces acting on an object all add up to zero, then we say that
<span>the group </span>of forces is balanced. When that happens, the group of forces
has the same effect on the object as if there were no forces on it at all.
An example:
Two people with exactly equal strength are having a tug-of-war. They pull
with equal force in opposite directions. Each person is sweating and straining,
grunting and groaning, and exerting tremendous force. But their forces add up
to zero, and the rope goes nowhere. The <u>group</u> of forces on the rope is balanced.
On the other hand, if one of the offensive linemen is pulling on one end of
the rope, and one of the cheerleaders is pulling on the other end, then their
forces don't add up to zero, because even though they're opposite, they're
not equal. The <u>group</u> of forces is <u>unbalanced</u>, and the rope moves.
A group of forces is either balanced or unbalanced. A single force isn't.
Answer:
Explanation:
You have to declare which way is plus -- up or down. I will use down.
vi = - 2.85 The balloon is going up. That is the minus direction.
a = 9.81
d = 2.50 meters distance in this case is from the object to the ground.
d = vi*t + 1/2 a t^2
-2.50 = -2.85*t + 1/2 * 9.81 * t^2
-2.50 = -2.85*t + 4.905 * t^2 transfer the left to the right.
-4.905 t^2 + 2.85*t + 2.50 = 0
Use the quadratic formula to solve for t.
It turns out that t = 1.06
Answer:
The specific latent heat of a substance is the amount of energy required to change the state of one kilo of the substance without change in it temperature.The latent heat of vaporization or evaporation is the heat given to some mass to convert if from the liquid to the vapor phase.