Answer:
aerodynamics
Explanation:
if an object like a car is going 200 mph at max speed and then the car gets aerodynamic or smoothed to the point that air can get by the car it could end up going another 20 mph faster
Answer:
E=-1.51 eV.

Explanation:
The nth level energy of a hydrogen atom is defined by the formula,

Given in the question, the hydrogen atom is in the 3p state.
Then energy of n=3 state is,

Therefore, energy of the hydrogen atom in the 3p state is -1.51 eV.
Now, the value of L can be calculated as,

For 3p state, l=1

Therefore, the value of L of a hydrogen atom in 3p state is
.
First satellite was Sputnik and it was a race then to send satellites!! Everyone starts experimenting how to launch.
first try was on a dog , Laika !! It was send to space as it is long after sputnik is placed in orbit !!
Now you know everyone knows rocket science and the most active are ISRO (India) and NASA (USA) !!
Answer:
a) In order to catch the ball at the level at which it is thrown in the direction of motion.
b)Speed of the receiver will be 7.52m/s
Explanation:
Calculating range,R= Vo^2Sin2theta/g
R= (20^2×Sin(2×30)/9.8 = 35.35m
Let receiver be(R-20) = 35.35-20= 15.35m
The horizontal component of the ball is:
Vox= Vocostheta= 20× cos30°
Vox= 17.32m/s
Time taken to coverR=35.35m with 17.32m/s will be:
t=R/Vox= 35.35/17.32
t= 2.04seconds
b)Speed required to cover 15.35m at 2.04seconds
Vxreciever= d/t = 15.35/2.04 = 7.52m/s
Answer:
See explanation below
Explanation:
If we are talking about the kinetic energy of the cylinder of oxygen:
The kinetic energy possessed by any object is given by

where
m is the mass of the object
v is its speed
In this case, we have one cylinder carried by a car and one standing on a platform: this means that the speed of the cylinder carried by the car will be different from zero (and so also its kinetic energy will be different from zer), while the speed of the cylinder standing on the platform will be zero (and so its kinetic energy also zero). Therefore, the kinetic energy of the cylinder carried by the car will be larger than that standing on a platform.
Instead, if we are talking about the kinetic energy due to the random motion of the molecules of oxygen inside the cylinder:
The kinetic energy of the molecules in a gas is directly proportional to the absolute temperature of the gas:

where k is called Boltzmann constant and T is the absolute temperature of the gas. Therefore, we see that K does not depend on whether the gas is in motion or not, but only on its temperature - therefore, in this case there is no difference between the kinetic energy of the cylinder carried by the car and that standing on the platform (assuming they are at the same temperature)