Answer: The correct statement is (A new substance is formed and the process can usually NOT be undone.)
Explanation:
A chemical reaction is simply defined as the reaction between two or more elements in which a new substance is formed and the process can usually not be undone. Different types of chemical reaction includes:
-- combination reaction: this occurs when two or more reactants form a product. For example: In the burning of coal, It combines with oxygen to produce carbon dioxide. Also in the burning of wood, carbon dioxide is given off and ashes are formed. Because new substance is being formed, they often can't be undone. The ashes formed can't be changed back into wood. Other types of chemical reaction are listed below.
-- Decomposition reaction
-- Single displacement reaction
-- Double displacement reaction
-- combustion reaction
-- Redox reaction
For the product of a chemical reaction to be undone (reversed), it has to undergo another chemical process different from the one that produced it.
Lamps heat up a coil inside a light bulb, TVs heat up tiny lamps behind liquid crystals to project a tiny image called a pixel
Given question is incomplete. The complete question is as follows.
Balance the following equation:

Answer: The balanced chemical equation is as follows.

Explanation:
When a chemical equation contains same number of atoms on both reactant and product side then this equation is known as balanced equation.
For example, 
Number of atoms on reactant side:
H = 5
P = 1
O = 6
Ca = 1
Number of atoms on product side:
H = 6
P = 2
O = 9
Ca = 1
In order to balance this equation, we will multiply
by 2 on reactant side and we will multiply
by 2 on product side. Hence, the balanced chemical equation is as follows.

Adding fertilizer to stimulate the aquatic plant growth, and putting research and money into renewable energy
Molarity can be used to calculate the volume of solvent or the amount of solute. The relationship between two solutions with the same amount of moles of solute can be represented by the formula c1V1 = c2V2, where c is concentration and V is volume.