Answer:
The voltage is
Explanation:
From the question we are told that
The time that has passed is 
Here
is know as the time constant
The voltage of the power source is 
Generally the voltage equation for charging a capacitor is mathematically represented as
![V = V_b [1 - e^{- \frac{t}{\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7Bt%7D%7B%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{\frac{\tau}{2}}{\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B%5Cfrac%7B%5Ctau%7D%7B2%7D%7D%7B%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{\tau}{2\tau} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B%5Ctau%7D%7B2%5Ctau%7D%20%7D%5D)
=> ![V = V_b [1 - e^{- \frac{1}{2} }]](https://tex.z-dn.net/?f=V%20%3D%20%20V_b%20%20%5B1%20-%20e%5E%7B-%20%5Cfrac%7B1%7D%7B2%7D%20%7D%5D)
=>
"Pluto was the first dwarf planet to be discovered" is the one statement among the following choices given in the question that is true <span>about dwarf planets. The correct option among all the options that are given in the question is the first option or option "a". Pluto was classified as a planet at first but in the year 1930 it was classified as a dwarf planet.</span>
Answer:
I = I₀ + M(L/2)²
Explanation:
Given that the moment of inertia of a thin uniform rod of mass M and length L about an Axis perpendicular to the rod through its Centre is I₀.
The parallel axis theorem for moment of inertia states that the moment of inertia of a body about an axis passing through the centre of mass is equal to the sum of the moment of inertia of the body about an axis passing through the centre of mass and the product of mass and the square of the distance between the two axes.
The moment of inertia of the body about an axis passing through the centre of mass is given to be I₀
The distance between the two axes is L/2 (total length of the rod divided by 2
From the parallel axis theorem we have
I = I₀ + M(L/2)²
As per the question, the velocity of the airplane [v] = 660 miles per hour.
The total time taken by airplane [t] = 3.5 hours.
We are asked to determine the total distance travelled by the airplane during that period.
The distance covered [ S] by a body is the product of velocity with the time.
Mathematically distance covered = velocity × total time
S = v × t
= 660 miles/hour ×3.5 hours
= 2310 miles.
Hence, the total distance travelled by the airplane in 3.5 hour is 2310 miles.
Answer:
Explanation: the temperature range is at 1,400