We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.
Answer:
High temperature and low pressure
Explanation:
According to the kinetic molecular theory, gases are composed of small particles called molecules which are in constant motion.
At high temperature and low pressure, gas molecules possess high kinetic energy and move at high velocities hence intermolecular interaction is almost none existent and real gases approach the behavior of ideal gases.
P
H
=
−
log
10
[
H
3
O
+
]
=
−
log
10
{
2.3
×
10
−
6
}
=
−
{
−
5.64
}
=
5.64
A group of environmentalists were discussing the benefits and drawbacks associated with using fossil fuels. Which argument <span>best </span>fits the conversation?
Fossil fuels are cheaper than alternative forms of energy.Fossil fuel reserves will never be depleted.<span>Fossil fuels are easily renewed. </span><span>Fossil fuel use does not affect the environment.</span>
The correct answer is:
a positron is emitted when proton converts to a neutron.
The reaction can be described as following:
₁¹p (proton) → ₀¹n (neutron) + ₁°e (positron or ₁⁰β)
Positron is an antiparticle of a β particle (₋₁°β), which means it has an oposite charge to it, but same mass.