
- <em>Expansion </em><em>of </em><em>particles</em><em> </em><em>of</em><em> </em><em>substances.</em><em> </em>
- <em>Increase</em><em> </em><em>in </em><em>temperature</em><em>.</em>
- <em>Change</em><em> </em><em>in </em><em>state</em><em>.</em>
- <em>Change</em><em> </em><em>in </em><em>physical</em><em> </em><em>property</em>
- <em>It </em><em>may </em><em>bring</em><em> </em><em>out </em><em>chemical</em><em> </em><em>changes</em><em>.</em>
__________________________________

Answer:
A molecule of sucrose (C12H22O11) has 12 carbon atoms, 22 hydrogen atoms and 11 oxygen atoms.
Explanation:
if this does not help let me know :)
The molecular geometry is trigonal planar. I would choose E
Answer:
El cocodrilo se arrastró durante 20.833 segundos.
Explanation:
El enunciado presenta omisiones y errores conceptuales. La forma correcta es la siguiente: <em>"Un cocodrilo se arrastró 25 metros hacia la derecha con una rapidez promedio de 1.2 metros por segundo. ¿Cuántos segundos se arrastró el cocodrilo?"</em>
Consideremos que el cocodrilo tiene un movimiento rectilíneo uniforme, el tiempo requerido para el recorrido se calcula con la siguiente ecuación cinemática:
(1)
Donde:
- Distancia recorrida, en metros.
- Rapidez del cocodrilo, en metros por segundo.
- Tiempo, en segundos.
Si
y
, entonces el tiempo empleado por el cocodrilo es:


El cocodrilo se arrastró durante 20.833 segundos.
<em />
Answer:
(a) 7.11 x 10⁻³⁷ m
(b) 1.11 x 10⁻³⁵ m
Explanation:
(a) The de Broglie wavelength is given by the expression:
λ = h/p = h/mv
where h is plancks constant, p is momentum which is equal to mass times velocity.
We have all the data required to calculate the wavelength, but first we will have to convert the velocity to m/s, and the mass to kilograms to work in metric system.
v = 19.8 mi/h x ( 1609.34 m/s ) x ( 1 h / 3600 s ) = 8.85 m/s
m = 232 lb x ( 0.454 kg/ lb ) = 105.33 kg
λ = h/ mv = 6.626 x 10⁻³⁴ J·s / ( 105.33 kg x 8.85 m/s ) = 7.11 x 10⁻³⁷ m
(b) For this part we have to use the uncertainty principle associated with wave-matter:
ΔpΔx > = h/4π
mΔvΔx > = h/4π
Δx = h/ (4π m Δv )
Again to utilize this equation we will have to convert the uncertainty in velocity to m/s for unit consistency.
Δv = 0.1 mi/h x ( 1609.34 m/mi ) x ( 1 h/ 3600 s )
= 0.045 m/s
Δx = h/ (4π m Δv ) = 6.626 x 10⁻³⁴ J·s / (4π x 105.33 kg x 0.045 m/s )
= 1.11 x 10⁻³⁵ m
This calculation shows us why we should not be talking of wavelengths associatiated with everyday macroscopic objects for we are obtaining an uncertainty of 1.11 x 10⁻³⁵ m for the position of the fullback.