Kinetic energy is the energy of motion. The mass and velocity of an object determines its kinetic energy
The velocity, 50 m/s, has two components - vertical and horizontal velocities.
The vertical component = 50 sin 30 = 25 m/s
The horizontal component = 50 cos 30 = 43.3 m/s
(a) Let t be the time taken for the vertical component to reach its peak from initial velocity = 25 m/s to its final velocity = 0.
Using the linear motion equation v = u - gt
0 = 25 - 10t
t = 2.5 s
Time taken to go up and down = 5 s
Time to hit the ground = 5 s
(b) Horizontal distance dealt x = 43.3 * 5 = 216.5 m
This is not the correct answer, but explains the problem thoroughly.
Answer:
emf = 15 * Area and if A is given in square meters, the units of the emf will be Volts
Explanation:
Assuming that the area of the loop of current (A) is known, the magnitude of the induced emf can be calculated using Faraday-Lenz's Law:

and if the area (A) is given in square meters, the emf will directly come in units of Volts.
Answer:
Induced emf through a loop of wire is 3.5 V.
Explanation:
It is given that,
Initial magnetic flux, 
Final magnetic flux, 
The magnetic flux through a loop of wire decreases in a time of 0.4 s, t = 0.4 s
We need to find the average value of the induced emf. It is equivalent to the rate of change of magnetic flux i.e.



So, the value of the induced emf through a loop of wire is 3.5 V.