The final momentum of the ball is 3.8 kgm/s.
<h3>Change in momentum of the ball</h3>
The impulse received by the ball is equal to change in momentum of the ball.
J = ΔP
where;
- J is the impulse
- ΔP is change in momentum
ΔP = P₂ - P₁
P₂ = ΔP + P₁
<h3>Final momentum of the ball</h3>
The final momentum of the ball is calculated as follows;
P₂ = 8 + (- 0.1 x 42)
P₂ = 8 - 4.2
P₂ = 3.8 kgm/s
Learn more about change in momentum here: brainly.com/question/7538238
Answer:
Pemain A
Explanation:
Mengingat data berikut;
Kecepatan pemain A = 12 m/s
Kecepatan pemain B = 36 km/h
Untuk menentukan siapa pelari tercepat di antara dua pemain;
Pertama-tama, kita harus mengubah kecepatan menjadi satuan standar pengukuran yang sama.
Jadi, mari kita gunakan pengukuran umum meter per detik.
Konversi:
36 km/h = (36 * 1000)/(60 * 60)
36 km/h = 36000/3600
36 km/h = 10 m/s
Kecepatan pemain B = 10 m/s
Oleh karena itu, dibandingkan dengan kecepatan pemain A; pemain A lebih cepat.
1: only half the outlet is switched and the lamp is in the other half
2: the lamp is turned off.
3: The light bulb is burned out
4: the switch might be broken
5: the fuse might be blown
6: the electricity might be off
A. inelastic, since the girl moves in the same direction as the thrown ball
Answer:
The frequency of watering
Explanation:
The manipulated variable in this case is the frequency of adding water to the experimental plants.
While the first plant can be said to have a watering frequency of a day, the second had a watering frequency of 2 days while the third plant had a watering frequency of 3 days.
The experiment must have been set up to determine the effects of frequency of watering on the growth of tomato plants.