Answer:
b. 2.28 M
Explanation:
The reaction of neutralization of NaOH with H2SO4 is:
2NaOH + H2SO4 → Na2SO4 + 2H2O
<em>Where 2 moles of NaOH react per mole of H2SO4</em>
<em />
To solve the concentration of NaOH we need to find the moles of H2SO4. Using the chemical equation we can find the moles of NaOH that react and with the volume the molar concentration as follows:
<em>Moles H2SO4:</em>
45.7mL = 0.0457L * (0.500mol/L) = 0.02285 moles H2SO4
<em>Moles NaOH:</em>
0.02285 moles H2SO4 * (2moles NaOH / 1 mol H2SO4) = 0.0457moles NaOH
<em>Molarity NaOH:</em>
0.0457moles NaOH / 0.020L =
2.28M
Right option:
<h3>b. 2.28 M</h3>
Answer: 316.8 g CrSO3
Explanation: Solution:
2.4 moles CrSO3 x 132 g CrSO3 / 1 mole CrSO3 = 316.8 g CrSO4
The conversion factor is 1 mole of CrSO4 is equal to its molar mass which is 132 g CrSO3
Answer:
The corect answer is c) naturally occurring; solids
Explanation:
Minerals exists as solid substances in nature consisting of one or more element chemically combined together formiming compounds with definite composition. As mentioned earlier single elements can form minerals and examples of single element mineral are Silver, Carbon and Gold which are found in nature in their pure form and are mined.
Minerals are normally found in rocks, which may contain one ore more different types of minerals
Answer : The formula for each of the following is:
(a) 
(b) 
(c) 
Explanation :
- Alkanes are hydrocarbon in which the carbon atoms are connected with single covalent bonds.
The general formula of alkanes is
where n is the number of the carbon atoms present in a molecule of alkane.
- Alkenes are hydrocarbon in which the carbon atoms are connected with double covalent bonds.
The general formula of alkenes is
where n is the number of the carbon atoms present in a molecule of alkene.
- Alkynes are hydrocarbon in which the carbon atoms are connected with triple covalent bonds.
The general formula of alkynes is
where n is the number of the carbon atoms present in a molecule of alkyne.
(a) An alkane with 22 carbon atoms
Putting n = 22 in the general formula of alkane, we get the formula of alkane as,
or 
(b) An alkene with 17 carbon atoms
Putting n = 17 in the general formula of alkene, we get the formula of alkene as,
or 
(c) An alkyne with 13 carbon atoms
Putting n = 13 in the general formula of alkyne, we get the formula of alkyne as,
or 