Data:
n (Wave node)
V (Wave belly)
L (Wave length)
<span>The number of bells is equal to the number of the harmonic emitted by the string.
</span>
Wire 2 → 2º Harmonic → n = 2
Wire 1 → 1º Harmonic or Fundamental rope → n = 1
If, We have:
V = 42L
Soon:
Answer:
<span>The fundamental frequency of the string:
</span>
21 Hz
<h2>QUESTION:- It is easier to lift the same load by using three pulley system than by using two-pulley system.</h2>
<h2>ANSWER:- IN CASE OF IDEAL PULLEY SYSTEM</h2>
<h2>REASON:- </h2>
Logic behind is lies behind the mechanical advantage of the provided bt the Pulley system.
as if we calculate the mechanical advantage of the 2 Pulley system we will have the value 2
And if we will calculate the mechanical advantage of the 3 pulley system then we will get the value of 3
so due to extra mechanical advantage we feel it easy to move with 3 pulley system then 2 Pulley system
<h3>Question -:</h3>
The Earth orbits around the sun because the gravitational force that the sun
exerts on the Earth:
O A. causes Earth's acceleration toward the sun.
O B. is very small because the sun is so far from the Earth.
O c. is smaller than the force the Earth exerts on the sun.
O D. pushes the Earth away from the sun.
<h3>Answer -:</h3>
O A. causes Earth's acceleration toward the sun.
<em>I </em><em>hope </em><em>this</em><em> </em><em>helps</em><em>,</em><em> </em><em>have </em><em>a </em><em>nice </em><em>time </em><em>ahead!</em>