Answer:
202 L
Explanation:
Step 1: Write the balanced equation
C₆H₁₂O₆ + 6 O₂(g) ⇒ 6 CO₂(g) + 6 H₂O(l)
Step 2: Calculate the moles corresponding to 270 g of C₆H₁₂O₆
The molar mass of C₆H₁₂O₆ is 180.16 g/mol.
270 g × 1 mol/180.16 g = 1.50 mol
Step 3: Calculate the moles of CO₂ generated from 1.50 moles of glucose
The molar ratio of C₆H₁₂O₆ to CO₂ is 1:6. The moles of CO₂ formed are 6/1 × 1.50 mol = 9.00 mol
Step 4: Calculate the volume of 9.00 moles of CO₂ at STP
The volume of 1 mole of an ideal gas at STP is 22.4 L.
9.00 mol × 22.4 L/mol = 202 L
Answer: An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal.
basically explains
I think the answer is number D…. I think
Answer: Uruguay on north on the Atlantic side, Chile and north on the Pacific side. The higher up you go the warmer, so Brazil, Ecuador, and Colombia will be the warmest especially in terms of water temperature.
The compound
will have a triple bond.
Explanation:
A compound which consists of carbon and hydrogen atoms is known as a hydrocarbon.
Alkanes, alkenes and alkynes are all hydrocarbons.
- General chemical formula of an alkane is
. In an alkane molecule, all the atoms will be bonded through single bonds.
For example,
is propane.
- General chemical formula of an alkene is
. An alkene molecule will have atleast one double bond between two carbon atoms.
For example,
is ethene.
- General chemical formula of an alkyne is
. An alkyne will have atleast one triple bond between two carbon atoms.
For example,
is propyne.
Thus, we can conclude that out of the given options
will have a triple bond.