Interesting question. I'd take a guess that it could be either mirrors and light travelling in straight lines and being reflected, or optical fibres to achieve a perhaps similar result.
Answer:
0.69s
Explanation:
10 cm = 0.1 m
Let t be the time that radial and tangential components of the linear acceleration of a point on the rim be equal in magnitude. At that time we have the angular velocity would be

And so the radial acceleration is

The tangential acceleration is always the same since angular acceleration is constant:

For these 2 quantities to be the same




Answer:
The Statement is wrong because the reverse is the case as it is the kinetic energy that is being transformed to gravitational potential energy.
Explanation:
As your friend throws the baseball into the air the ball gains an initial velocity (u) and this makes the Kinetic energy to be equal to

Here m is the mass of the baseball
Now as this ball moves further upward the that velocity it gained reduce due to the gravitational force and this in turn reduces the kinetic energy of the ball and this kinetic energy lost is being converted to gravitational potential energy which is mathematically represented as (m×g×h)
as energy can not be destroyed but converted to a different form according to the first law of thermodynamics
Looking a the formula for gravitational potential energy we see that the higher the ball goes the grater the gravitational potential energy.
Answer:
look at my Explanation
Explanation:
If the Maggie's mass is 100.0 kg and the truck is 1810 kg, calculate the magnitude of the net (unbalanced) force that can cause the acceleration.
Answer:
When an object is dropped, it accelerates toward the center of Earth. Newton's second law states that a net force on an object is responsible for its acceleration. If air resistance is negligible, the net force on a falling object is the gravitational force.