The magnitude of the magnetic force on the proton is 1.25× 10—¹³ N.
Speed of the proton = 5.02 × 10 ⁶ m /a
Angel of between the velocity and the magnetic force = 60 °
The magnitude of magnetic field B = 0.180 T
The magnitude of the magnetic force on the proton is,




Therefore, the magnitude of the magnetic force on the proton is 1.25× 10—¹³ N.
To know more about magnetic force, refer to the below link:
brainly.com/question/23096032
#SPJ4
Answer:
A) ( - 200t + 40 ) volts
B) b) anticlockwise , c) anticlockwise , d) clockwise , e) clockwise
Explanation:
Given data:
magnetic flux (Φm) = 5.0t^2 − 2.0t
number of turns = 20
<u>a) determine induced emf </u>
E = - N 
= - N ( 10t - 2 ) = - 20 ( 10t - 2 )
= - 200t + 40 volts
<u>b) Determine direction of induced current </u>
i) at t = 0
E = - 0 + 40 ( anticlockwise direction )
ii) at t = 0.10
E = -20 + 40 = 20 ( anticlockwise direction )
iii) at t = 1
E = - 200 + 40 = - 160 ( clockwise direction)
iv) at t = 2
E = -400 + 40 = - 360 ( clockwise direction )
Hello,
The answer is to "prove your hypothesis".
Reason:
Researchers do experiments to prove there hypothesis they will most likely do the experiment a few times in older to have the conclusion valid therefore proving his or her experiment.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer:
A real emf device has an internal resistance, but an ideal emf device does not.
Answer:
The new intensity decreases by a factor of 16.
Explanation:
The intensity of sound wave is given by :

P is power
A is area

or
, r is distance from the source
If the distance from the source is increased by a factor of 4, r' = 4r
So,

So, the new intensity decreases by a factor of 16.