Answer:
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Explanation:

initially
0.85 M 0 0
(0.85-x)M x x
The equilibrium constant of reaction = 
The expression of an equilibrium cannot can be written as:
![K_c=\frac{[H^+][CN^-]}{[HCN]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH%5E%2B%5D%5BCN%5E-%5D%7D%7B%5BHCN%5D%7D)

Solving for x:
x = 0.0000229
Concentration of product at equilibrium ;
![[H^+]=0.0000229 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.0000229%20M)
![[CN^-]=0.0000229 M](https://tex.z-dn.net/?f=%5BCN%5E-%5D%3D0.0000229%20M)
Water is not part of that compound. What is the chemical equation?
The answer for that is 16, math right?
Explanation:
Kinetic energy is defined as the energy obtained by an object due to its motion. Whereas energy obtained by an object due to its position is known as potential energy.
(a) When a sled is resting at the top of a hill then it means the sled in not moving. Hence, then it has only potential energy. But when a sled sliding down the hill then it is moving from its initial position.
Hence, when a sled is sliding down the hill then it has higher kinetic energy.
(b) When water is above the dam then it only has potential energy but when the water falls over the dam then it has higher kinetic energy.
Answer:
this one is hard
Explanation:
but it's iron because the sodium so yea there u go.