Answer:
Tend. Similar. Parents. (sorry if it's wrong. It's kinda confusing on the last 2 words. Make it more clearer pls to get a better answer)
Explanation:
Answer:
c = 0.528 J/g.°C
Explanation:
Given data:
Mass of titanium = 43.56 g
Heat absorbed = 0.476 KJ = 476 j
Initial temperature = 20.5°C
Final temperature = 41.2°C
Specific heat capacity = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 41.2°C - 20.5°C
ΔT = 20.7 °C
476 J = 43.56 g × c × 20.7 °C
476 J = 901.692 g.°C × c
c = 476 J / 901.692 g.°C
c = 0.528 J/g.°C
Answer:
When light is shone on to the surface of a metal, its electrons absorb small amounts of energy and become excited into one of its many empty orbitals. The electrons immediately fall back down to lower energy levels and emit light. This process is responsible for the high luster of metals.
Explanation:
<em> </em><em>Your </em><em>well-wisher</em><em> </em><em>:-)</em>
The pH of the solution : 12
<h3>Further explanation</h3>
Reaction
HCOOH + NaOH ⇒ HCOONa + H₂O
mol HCOOH =

mol NaOH =

Mol NaOH>mol HCOOH ⇒ at the end of the reaction there will be a strong base remains from mol NaOH, so that the pH is determined from [OH⁻]
ICE method :
HCOOH + NaOH ⇒ HCOONa + H₂O
4 5
4 4 4 4
0 1 1 1
Concentration of [OH⁻] from NaOH :

pOH=-log[OH⁻]
pOH=-log 10⁻²=2
pH+pOH=14
pH=14-2=12