Answer:
0.56 atm
Explanation:
First of all, we need to find the number of moles of the gas.
We know that
m = 1.00 g is the mass of the gas
is the molar mass of the carbon dioxide
So, the number of moles of the gas is

Now we can find the pressure of the gas by using the ideal gas equation:

where
p is the pressure
is the volume
n = 0.023 mol is the number of moles
is the gas constant
is the temperature of the gas
Solving the equation for p, we find

And since we have

the pressure in atmospheres is

Answer:
1. The United States Department of Agriculture’s Food Safety and Inspection Service (FSIS)
Explanation:
FSIS has primary responsibility for the regulation of food labeling
for meat and poultry products under the FMIA(Federal Meat Inspection Act) and the PPIA(Poultry Products Inspection Acts) and is also
authorized to regulate food labeling for exotic species of animals under the
Agricultural Marketing Act of 1946.
It started off with 68% less than it did at the peak, and later created a void and melted the remainder of the ice at about 92%
Explanation:
Starting position at x = 16m
Ending position at x = -25m
Time of flight = 4s
Unknown:
Distance flown = ?
Displacement = ?
Speed = ?
Velocity = ?
Solution:
To find the distance flown, we should understand that the body is moving on the x - plane;
So distance = 16 + 25 = 41m
Displacement is 41m to the left or -x axis
Speed is the distance divided by the time taken;
Speed =
=
= 10.25m/s
Velocity is 10.25m/s along -x axis
Answer Explanation :
Poiseuille equation: this equation is used for non ideal flow this is used for the calculation of pressure in laminar flow it is physical law we know that fluid in laminar flow, flows across the pipe whose diameter is larger than the length of pipe
in mathematical form the equation can be expressed as
Q = 
where η is the cofficient of viscosity
now if we assume a small sphere of radius a is suspended freely in the plane of the laminar flow then for assuring that the sphere does not migrate with the flow we have to calculate the rate of flow of the liquid