London Dispersion forces
Explanation:
London dispersion forces exists between the molecules of CO₂. These are weak attractions found between non-polar (and polar) molecules(symmetrical molecules).
- This attraction sometimes makes non-polar molecules polar.
- This is because of the uneven charge distribution caused by the constant motion of its electrons.
- A temporary dipole or instantaneous dipole induces the neighboring molecules to become distorted and forms dipoles as well.
- The forces are the weakest of all electrical forces.
Learn more:
Intermolecular forces brainly.com/question/10107765
#learnwithBrainly
Answer: Option (c) is the correct answer.
Explanation:
A limiting reagent is defined as a reagent that completely gets consumed in a chemical reaction. A limiting reagent limits the formation of products.
For example, we have given 5 mol of A and the reaction is 
Whereas when 4 mol B will react with 2 mol of A. Hence, 8 mol of B will react with 4 mol A as follows.
= 4 mol
As, the given moles of A is more than the required moles. Thus, it is considered as an excess reagent.
Hence, B is a limiting reagent because it limits the formation of products.
Thus, we can conclude that limiting reactant is the term used to describe the reactant that is used up completely and controls the amount of product that can be produced during a chemical reaction.
<h3><u>Answer;</u></h3>
HCl and KCl
<h3><u>Explanation</u>;</h3>
- Strong electrolytes are strong bases and acids.
- HCl is a strong acid; it dissociates completely to form H+ and Cl- ions. Thus, it is a strong, rather than weak, electrolyte.
- CH3COOH is acetic acid, a weak acid. Only some of it will dissociate (to H+ and acetate ions), thus, it will only be a weak electrolyte.
- NH3 will react with water as a weak base: NH3 + H2O → NH4+ + OH-. It will thus also be a weak electrolyte.
- KCl is a soluble ionic compound, and as such, it will be a strong electrolyte.
Answer:
Go to
On the left, click Missing.
(Optional) To review more details, click an item. View details.
Explanation:
Answer: formic acid (HCOOH) contains the greatest mass of oxygen
Explanation:Please see attachment for explanation