I would say that the answer has to be C
Since there is no change in mols on both sides of the equation the mass is constant
Answer:
The correct answer is: d. The pKa of the chosen buffer should be close to the optimal pH for the biochemical reaction.
Explanation:
The buffer resist or maintain the change in pH in case of Acid or basic addition to the solution. The buffer capacity should be within one or two pH units when compared to the optimal pH.
Thus it is important to select a buffer with pKa close to the optimum pH of the reaction because the ability for the buffer to maintain the pH is is great at the pH close to pKa.
Maximum number of covalent bonds that an oxygen atom can make with hydrogen is 2.
- the ground state electronic configuration of oxygen is 2s² 2p⁴ that means it has 6 electrons in its valence shell and require two electrons are required to complete its octate.
- Two bonds are created when an electron donor atom shares the two needed electrons with oxygen. The ability of two oxygen atoms to share valence electrons results in the creation of a double bond between the two atoms.
- There are no longer any empty orbitals in the octet of oxygen after it is complete. As a result, it is unable to accept more electrons or create more bonds.
Therefore, Oxygen can only generate two bonds because it needs two additional electrons to complete its octet, after which it will run out of empty orbitals in which to receive additional electrons and create additional bonds.
learn more about octate here:
https://brainly.in/question/24161245
#SPJ4
If the concentration of water inside a cell is higher than the concentration of water outside a cell, osmosis will take place, as water will move from an area of low solute concentration inside the cell to higher solute concentration, outside the cell.
Answer:
22 mol
Explanation:
Given data:
Number of atoms of Cl = 2.65×10²⁵ atom
Number of moles of Cl = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
2.65×10²⁵ atom × 1 mol / 6.022 × 10²³ atoms
0.44×10² mol
22 mol