From the gravity acceleration theorem due to a celestial body or planet, we have that the Force is given as

Where,
F = Strength
G = Universal acceleration constant
M = Mass of the planet
m = body mass
r = Distance between centers of gravity
The acceleration by gravity would be given under the relationship


Here the acceleration is independent of the mass of the body m. This is because the force itself depended on the mass of the object.
On the other hand, the acceleration of Newton's second law states that

Where the acceleration is inversely proportional to the mass but the Force does not depend explicitly on the mass of the object (Like the other case) and therefore the term of the mass must not necessarily be canceled but instead, considered.
A scientist can assess whether a pure niobium sample is responsible for contaminating the lab with radioactivity by testing the sample. By testing the niobium sample, a scientist can determine whether it has any other element.
Answer:
fly off, tangent to its circular path.
Explanation:
Look first for the relation between deBroglie wavelength (λ) and kinetic energy (K):
K = ½mv²
v = √(2K/m)
λ = h/(mv)
= h/(m√(2K/m))
= h/√(2Km)
So λ is proportional to 1/√K.
in the potential well the potential energy is zero, so completely the electron's energy is in the shape of kinetic energy:
K = 6U₀
Outer the potential well the potential energy is U₀, so
K = 5U₀
(because kinetic and potential energies add up to 6U₀)
Therefore, the ratio of the de Broglie wavelength of the electron in the region x>L (outside the well) to the wavelength for 0<x<L (inside the well) is:
1/√(5U₀) : 1/√(6U₀)
= √6 : √5
Answer:
499.523. meter
<em>I</em><em> hope</em><em> it's</em><em> helps</em><em> you</em>