Answer:
This question is incomplete
Explanation:
This question is incomplete because of the absence of options. However, one material that is good candidate for conducting electricity without reacting with other materials is metallic vanadium dioxide. This is because of the inability of this electrical conductor to conduct heat (an unusual property for all other electrical conductors) and thus makes it difficult for it to react with other materials (since an increase in temperature increases possibility of a reaction).
Answer:
The distance between the two objects must be squared.
Explanation:
Gravitational force always act between two objects that have mass. The gravitational force is a weak force and attractive in nature.
The force of pull depends on the masses of the two objects and the distance between them.
The formula to calculate gravitational force between two objects having masses 'm' and 'M' and separated by a distance 'd' is given as:

Where, 'G' is called the universal gravitational constant and its value is equal to
.
Now, from the above formula, it is clear that, the force of gravitation is inversely proportional to the square of the distance between the two objects.
Thus, the quantity that must be squared in the equation of gravitational force between two objects is the distance 'd'.
The change in potential energy when the block falls to ground is -480J.
The maximum change in kinetic energy of the ball is 480 J.
The initial kinetic energy of the ball is 0 J.
The final kinetic energy of the ball is 0.148J.
The initial potential energy of the ball is 0.187 J.
The final potential energy of the ball is 0 J.
The work done by the air resistance is 0.039 J.
<h3>Change in potential energy when the block falls to ground</h3>
ΔP.E = -mgh
ΔP.E = -Wh
ΔP.E = - 40 x 12
ΔP.E = -480 J
<h3>Maximum change in kinetic energy of the ball</h3>
ΔK.E = - ΔP.E
ΔK.E = - (-480 J)
ΔK.E = 480 J
<h3>Initial kinetic energy of the ball</h3>
K.Ei = 0.5mv²
where;
- v is zero since it is initially at rest
K.Ei = 0.5m(0) = 0
<h3>Final kinetic energy</h3>
K.Ef = 0.5mv²
K.Ef = 0.5(0.0091)(5.7)²
K.Ef = 0.148 J
<h3>Initial potential energy of the ball</h3>
P.Ei = mghi
P.Ei = 0.0091 x 9.8 x 2.1
P.Ei = 0.187 J
<h3>Final potential energy</h3>
P.Ef = mghf
P.Ef = 0.0091 x 9.8 x 0
P.Ef = 0
<h3>Work done by the air resistance</h3>
W = ΔE
W = P.E - K.E
W = 0.187 J - 0.148 J
W = 0.039 J
Learn more about potential energy here: brainly.com/question/1242059
#SPJ1
<h3 />
Answer: to avoid problems with water supply
Explanation: power plant needs water to run