Answer:
Final velocity of electron,
Explanation:
It is given that,
Electric field, E = 1.55 N/C
Initial velocity at point A, 
We need to find the speed of the electron when it reaches point B which is a distance of 0.395 m east of point A. It can be calculated using third equation of motion as :
........(1)
a is the acceleration, 
We know that electric force, F = qE

Use above equation in equation (1) as:


v = 647302.09 m/s
or

So, the final velocity of the electron when it reaches point B is
. Hence, this is the required solution.
Answer:
58.24 Km/h.
Explanation:
From the question given above, the following data were obtained:
Distance (d) = 495 Km
Time (t) = 8 h 30 mins
Speed (S) =?
Next, we shall express 8 hours 30 mins to hours.
We'll begin by convert 30 mins to hour.
60 mins = 1 h
Therefore,
30 mins = 30 mins × 1 h/ 60 mins
30 mins = 0.5 hour.
Thus,
8 h 30 min = 8 + 0.5 = 8.5 hours
Speed is define as the distance travelled per unit time. Mathematically, it is expressed as:
Speed = Distance /time
With the above formula, we can obtain the speed as shown below:
Distance (d) = 495 Km
Time (t) = 8.5 hour
Speed (S) =?
Speed = Distance /time
Speed = 495 Km / 8.5 hour
Speed = 58.24 Km/h
Thus, the speed is 58.24 Km/h.
Answer:
i think the answer is 12 ohms
plz mark me as brainliest :)
G.P.E = mgh
Weight = mg = 200N
So G.P.E = 200 * 2 = 400 Joules