Answer:
(a) 41.75m/s
(b) 4.26s
Explanation:
Let:
Distance, D = 89m
Gravity,
= 9.8 m/
Initial Velocity,
= 0m/s
Final Velocity,
= ?
Time Taken,
= ?
With the distance formula, which is
D =
+ 
and by substituting what we already know, we have:
89 =
×9.8×
With the equation above, we can solve for
:

Now that we have solved
, we can use the following velocity formula to solve for
:
, where
is also equals to
, so we have

By substituting
,
, and
,
We have:

Answers:
a) 30 m/s
b) 480 N
Explanation:
The rest of the question is written below:
a. What is the final speed of the falcon and pigeon?
b. What is the average force on the pigeon during the impact?
<h3>a) Final speed</h3>
This part can be solved by the Conservation of linear momentum principle, which establishes the initial momentum
before the collision must be equal to the final momentum
after the collision:
(1)
Being:


Where:
the mas of the peregrine falcon
the initial speed of the falcon
is the mass of the pigeon
the initial speed of the pigeon (at rest)
the final speed of the system falcon-pigeon
Then:
(2)
Finding
:
(3)
(4)
(5) This is the final speed
<h3>b) Force on the pigeon</h3>
In this part we will use the following equation:
(6)
Where:
is the force exerted on the pigeon
is the time
is the pigeon's change in momentum
Then:
(7)
(8) Since 
Substituting (8) in (6):
(9)
(10)
Finally:

Answer:
1) 0.51 seconds.
2) 1.45 m/s.
Explanation:
given, height from which cat falls = 1.3 m
we know that, s = ut +
at².
here if we consider cat moment only in downward direction,
intial velocity of cat in downward direction , u = 0.
so, time, t =
.
⇒ t =
= 0.51 seconds.
t = 0.51 seconds.
now, consider cat moment only in forward direction
s = ut , since acceleration is zero in forward direction
⇒ u =
.
so, u =
= 1.45 m/s .
Answer:
the object has least potential energy at mean position of the SHM
Explanation:
If a block is connected with a spring and there is no resistive force on the system
In this case the total energy of the system is always conserved and it will change from one form to another form
So here we will say that
Kinetic energy + Potential energy = Total Mechanical energy
As we can say that total energy is conserved so here we have least potential energy when the system has maximum kinetic energy
So here we also know that at mean position of the SHM the system has maximum speed and hence maximum kinetic energy.
So the object has least potential energy at mean position of the SHM