Answer:
Kinetic energy of bigger rock will be more than that of smaller one.
Explanation:
Kinetic energy of the rock is given by,
Kinetic energy = 
As velocity of both the rocks are same. Thus, kinetic energy is directly proportional to the mass of the rock
Kinetic energy ∝ mass
So, For greater mass kinetic energy will be greater and for smaller mass kinetic energy will be smaller.
Hence, Kinetic energy of bigger rock will be more than that of smaller one.
Answer:
Not possible
Explanation:
Unless there's some extra external force to keep both particles at rest after the collision, the momentum must be conserved before and after the collision.
So before the collision, 1 particle is at rest, 1 not -> total momentum is non-zero
After the collision, both particles are at rest -> total momentum is zero which is different from before.
Therefore this is not possible.
Answer:
x2 = 64 revolutions.
it rotate through 64 revolutions in the next 5.00 s
Explanation:
Given;
wheel rotates from rest with constant angular acceleration.
Initial angular speed v = 0
Time t = 2.50
Distance x = 8 rev
Applying equation of motion;
x = vt +0.5at^2 ........1
Since v = 0
x = 0.5at^2
making a the subject of formula;
a = x/0.5t^2 = 2x/t^2
a = angular acceleration
t = time taken
x = angular distance
Substituting the values;
a = 2(8)/2.5^2
a = 2.56 rev/s^2
velocity at t = 2.50
v1 = a×t = 2.56×2.50 = 6.4 rev/s
Through the next 5 second;
t2 = 5 seconds
a2 = 2.56 rev/s^2
v2 = 6.4 rev/s
From equation 1;
x = vt +0.5at^2
Substituting the values;
x2 = 6.4(5) + 0.5×2.56×5^2
x2 = 64 revolutions.
it rotate through 64 revolutions in the next 5.00 s
Inertia is the resistance of an object to moving or stopping
|Acceleration| = (change in speed) / (time for the change).
Change in speed = (6 mi/hr - 25 mi/hr) = -19 mi/hr
Time for the change = 10 sec
|Acceleration| = (-19 mi/hr) / (10 sec) = -1.9 mile per hour per second
Admittedly, that's a rather weird unit.
Other units, perhaps more comfortable ones, are:
-6,840 mi/hr²
-2.79 feet/sec²