Answer: 15.6 metres
Explanation:
Given that:
length of wave (λ)= ?
Frequency of wave F = 28 Hertz
Speed of wave (V) = 437 m/s
The wavelength is the distance covered by the wave in one complete cycle. It is measured in metres, and represented by the symbol λ.
So, apply V = F λ
Make λ the subject formula
λ = V / F
λ = 437 m/s / 28 Hertz
λ = 15.6 m
Thus, the length of the wave is 15.6 metres
I believe you ask about speed at the end of the hose:
The volume of the bucket is 225 liters which is equal to 225

.

Hose's cross section can be counted with the typical circle's area formula (with diameter instead of radius, that's why you've got a fraction):


are filled within 15 second.
As the bucket is being filled you can say that it's volume is the volume of the water that flowed out of the hose, then:

The speed of the water can be counted with equation:

After extracting h from the volume's equation you get:

When you count the fraction you get the answer:
Answer:
Speed of sound inside metal is ≅ 8200 
Explanation:
Given :
Length of metal bar
m
From general velocity equation,

Where
speed of sound in air = 343 
For finding time from above equation,


sec
Since pulses are separated by
sec
So we take time difference,

So speed of sound in metal is,



The
speed of sound depends on any form of matter or medium in which sound travels
through it and depends on the amount of molecular collisions. Sound travels slowest in gas in the form of steam
because the sound has to move around the gas molecules that are far apart making
it harder for the
energy of vibrations hit the particles and make sound.
Moreover,
sound travelling through solids like ice is much faster because the particles
are closer together so the sound waves do not have to travel that far making the
number of collisions greater and sound spread more easily.