Answer: 
Explanation:
The Compton Shift
in wavelength when the photons are scattered is given by the following equation:
(1)
Where:
is a constant whose value is given by
, being
the Planck constant,
the mass of the electron and
the speed of light in vacuum.
the angle between incident phhoton and the scatered photon.
We are told the maximum Compton shift in wavelength occurs when a photon isscattered through
:
(2)
(3)
Now, let's find the angle that will produce a fourth of this maximum value found in (3):
(4)
(5)
If we want
,
must be equal to 1:
(6)
Finding
:
Finally:
This is the scattering angle that will produce
Answer:
Part 1 
Part 2 
Part 3 
Explanation:
Given
Number of protons 
Radius of nucleus 
Distance of the electrons 
Part 1
Electric field produced by just outside its surface

Part 2
Electric field produced by just outside its surface

Part 3
The net electric field inside a uniform shell of negative charge is zero because the electric flux lines cancel out each other
hence, the solution is
Part 1 
Part 2 
Part 3 
Answer:
32.3 m/s
Explanation:
The ball follows a projectile motion, where:
- The horizontal motion is a uniform motion at costant speed
- The vertical motion is a free fall motion (constant acceleration)
We start by analyzing the horizontal motion. The ball travels horizontally at constant speed of

and it covers a distance of
d = 165 m
So, the total time of flight of the ball is

In order to find the vertical velocity of the ball, we have now to analyze its vertical motion.
The vertical motion is a free-fall motion, so the ball is falling at constant acceleration; therefore we can use the following suvat equation:

where
is the vertical velocity at time t
is the initial vertical velocity
is the acceleration of gravity (taking downward as positive direction)
Substituting t = 3.3 s (the time of flight), we find the final vertical velocity of the ball:
The distance from the centre of the rule at which a 2N weight must be suspend from A is 29.3 cm.
<h3>Distance from the center of the meter rule</h3>
The distance from the centre of the rule at which a 2N weight must be suspend from A is calculated as follows;
-----------------------------------------------------------------
20 A (30 - x)↓ x ↓ 20 cm B 30 cm
2N 0.9N
Let the center of the meter rule = 50 cm
take moment about the center;
2(30 - x) + 0.9(x)(30 - x) = 0.9(20)
(30 - x)(2 + 0.9x) = 18
60 + 27x - 2x - 0.9x² = 18
60 + 25x - 0.9x² = 18
0.9x² - 25x - 42 = 0
x = 29.3 cm
Thus, the distance from the centre of the rule at which a 2N weight must be suspend from A is 29.3 cm.
Learn more about brainly.com/question/874205 here:
#SPJ1