Answer:
The angular displacement is 
Explanation:
From the question we are told that
The initial angular speed is 
The angular acceleration is 
The time take is 
Generally the angular displacement is mathematically represented as

substituting values


Answer:
In an elastic collision, the momentum is conserved and the mechanical energy is conserved too.
Explanation:
There are two types of collisions:
- Elastic collision: in an elastic collision, the total momentum before and after the collision is conserved; also, the total mechanical energy before and after the collision is conserved.
- Inelastic collision: in an inelastic collision, the total momentum before and after the colllision is conserved, while the total mechanical energy is not conserved (in fact, part of the energy is converted into other forms of energy such that thermal energy, due to the presence of frictional forces)
The block's speed at the point where x=0.25A is v = 31.95 cm/s.
<h3>What is Spring constant?</h3>
The spring stiffness is quantified by the spring constant, or k. For various springs and materials, it varies. The stiffer the spring is and the harder it is to stretch, the bigger the spring constant.
question is incomplete, this is the remaining statement
What is the amplitude of the subsequent oscillations? And What is the block's speed at the point where x=0.25A?
x = Asin(wt)
v = Aw coswt
at t = 0
w = sqrt(k/m)
v = Aw
A = v/w
A = 7.17 cm
part b )
E = 1/2mv^2 + 1/2kx^2 = 1/2kA^2
mv^2 + k(1/4A)^2 = 1/2kA^2
mv^2 + kA^2/16 = kA^2
mv^2 = kA^2 - kA^2/16
mv^2 = 15kA^2/16
v^2 = 15/16 * (k/m) * A^2
v^2 = 15/16 *w^2A^2
v = sqrt(15/16) * wA
v = 31.95 cm/s
to learn more about spring constant go to -
brainly.com/question/23885190
#SPJ4
You probably already took this but if anyone wanted to know the answer it's D. "A system where matter and energy cannot enter or leave the system".
(I also took the quiz for it and got it correct)
Answer:
Check the explanation
Explanation:
Kindly check the attached image below to see the step by step explanation to the question above.