Most likely, C. the Moon does not have a liquid core (this is what would create a magnetic field) is correct.
I hope this enough to help you!
Answer:
(a) 1.85 m/s
(b) 4.1 m/s
Explanation:
Data
- initial bullet velocity, Vbi = 837 m/s
- wooden block mass, Mw = 820 g
- initial wooden block velocity, Vwi = 0 m/s
- final bullet velocity, Vbf = 467 m/s
(a) From the conservation of momentum:
Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf
Mb*(Vbi - Vbf)/Mw = Vwf
4.1*(837 - 467)/820 = Vwf
Vwf = 1.85 m/s
(b) The speed of the center of mass speed is calculated as follows:
V = Mb/(Mb + Mw) * Vbi
V = 4.1/(4.1 + 820) * 837
V = 4.1 m/s
Answer:
7.75 s
Explanation:
Newton's second law:
∑F = ma
35 N = (70 kg) a
a = 0.5 m/s²
Given v₀ = 0 m/s and Δx = 15 m:
Δx = v₀ t + ½ at²
(15 m) = (0 m/s) t + ½ (0.5 m/s²) t²
t = 7.75 s
Answer:
d(L)/dt = 6,96 ft/s
Explanation:
We have a right triangle where the hypotenuse (L) is the distance between the player and home plate, the legs are the line between third base and home plate ( 90 feet ) and distance between the player and third base (x) (over the line between second and third base). So we can write
L² = (90)² + x²
Applying differentiation in relation to time, on both sides of the equation we have:
2*LdL/dt = 0 + 2*x d(x)/dt (2)
In this equation we know:
d(x)/ dt = 22 feet/sec
x = 30 ft
We need to calculate L when the player is at 30 feet from third base
Then
L² = (90)² + (30)²
L² = 8100 + 900
L = √9000
L =94,87 feet
Then we are in condition for calculate d(L)/dt from the equation
2*Ld(L)/dt = 0 + 2*x d(x)/dt
2*94,87 * d(L)/dt = 2* 30* 22 ⇒ 189,74 d(L)/dt = 1320
d(L)/dt = 1320/ 189,74
d(L)/dt = 6,96 ft/s
Answer:
repetitions of a certain exercise
Explanation: