Answer:
The force between the charges when the separation decreases to 0.7 meters equals 126.955 Newtons
Explanation:
We know that for two point charges of magnitude
the magnitude of force between them is given by

where
is constant
is the separation between the charges
Initially when the charges are separated by 2.4 meters the force can be calculated as

Now when the separation is reduced to 0.7 meters the force is similarly calculated as

Applying value of the constant we get

Thus 
In order to create a robotic dog, you are needing the necessary parts to create Goddard from Jimmy nutreon boy genius
Answer:
░░░░░▐▀█▀▌░░░░▀█▄░░░
░░░░░▐█▄█▌░░░░░░▀█▄░░
░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░
░░░░▄▄▄██▀▀▀▀░░░░░░░
░░░█▀▄▄▄█░▀▀░░
░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob
▄░▐░░░▄▄░█░▀▀ ░░
▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers
░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take
░░░░░░░▀███▀█░▄░░ Over brainly
░░░░░░▐▌▀▄▀▄▀▐▄░░
░░░░░░▐▀░░░░░░▐▌░░
░░░░░░█░░░░░░░░█
Explanation:
Complete Question
Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stress is applied along a [121] direction. If slip occurs on a (101) plane and in a [111] direction, compute the stress at which the crystal yields if its critical resolved shear stress is 2.9 MPa.
Answer:
The stress is 
Explanation:
From the question we are told that
The critical yield resolved shear stress is 
First we obtain the angle
between the slip direction [121] and [111]
![\lambda = cos^{-1} [\frac{(u_1 u_2 + v_1 v_2 + w_1 w_2}{\sqrt{u_1^2 + v_1 ^2+ w_1^2})\sqrt{( u_2^2 + v_2^2 + w_2 ^2)} } ]](https://tex.z-dn.net/?f=%5Clambda%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B%28u_1%20u_2%20%2B%20v_1%20v_2%20%2B%20w_1%20w_2%7D%7B%5Csqrt%7Bu_1%5E2%20%2B%20v_1%20%5E2%2B%20w_1%5E2%7D%29%5Csqrt%7B%28%20u_2%5E2%20%2B%20v_2%5E2%20%2B%20w_2%20%5E2%29%7D%20%7D%20%20%5D)
Where
are the directional indices
![\lambda = cos ^-[ \frac{(1) (-1) + (2) (1) + (1) (1)}{\sqrt{((1)^2 +(2)^2 + (1)^2)}\sqrt{((-1)^2 + (1)^2 + (1)^2 ) } } ]](https://tex.z-dn.net/?f=%5Clambda%20%20%3D%20%20cos%20%5E-%5B%20%5Cfrac%7B%281%29%20%28-1%29%20%2B%20%282%29%20%281%29%20%2B%20%281%29%20%281%29%7D%7B%5Csqrt%7B%28%281%29%5E2%20%2B%282%29%5E2%20%2B%20%281%29%5E2%29%7D%5Csqrt%7B%28%28-1%29%5E2%20%2B%20%281%29%5E2%20%2B%20%281%29%5E2%20%29%20%7D%20%20%7D%20%5D)
![= cos^{-1} [\frac{2}{\sqrt{6} \sqrt{3} } ]](https://tex.z-dn.net/?f=%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B2%7D%7B%5Csqrt%7B6%7D%20%5Csqrt%7B3%7D%20%20%7D%20%5D)
Next is to obtain the angle
between the direction [121] and [101]
![\O = cos^{-1} [\frac{(u_1 u_3 + v_1 v_3 + w_1 w_3}{\sqrt{u_1^2 + v_1 ^2+ w_1^2})\sqrt{( u_3^2 + v_3^2 + w_3 ^2)} } ]](https://tex.z-dn.net/?f=%5CO%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B%28u_1%20u_3%20%2B%20v_1%20v_3%20%2B%20w_1%20w_3%7D%7B%5Csqrt%7Bu_1%5E2%20%2B%20v_1%20%5E2%2B%20w_1%5E2%7D%29%5Csqrt%7B%28%20u_3%5E2%20%2B%20v_3%5E2%20%2B%20w_3%20%5E2%29%7D%20%7D%20%20%5D)
Substituting 1 for
, 2 for
, 1 for
, 1 for
, 0 for
, and 1 for 
![\O = cos^{-1} [\frac{1* 1 + 2*0 + 1*1 }{\sqrt{1^2 + 2^2 + 1^2 } \sqrt{(1^2 + 0^2 + 1^2 )} } ]](https://tex.z-dn.net/?f=%5CO%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B1%2A%201%20%2B%202%2A0%20%2B%201%2A1%20%7D%7B%5Csqrt%7B1%5E2%20%2B%202%5E2%20%2B%201%5E2%20%7D%20%5Csqrt%7B%281%5E2%20%2B%200%5E2%20%2B%201%5E2%20%29%7D%20%20%7D%20%5D)
![\O = cos^{-1} [\frac{2}{\sqrt{6} \sqrt{2} } ]](https://tex.z-dn.net/?f=%5CO%20%3D%20cos%5E%7B-1%7D%20%5B%5Cfrac%7B2%7D%7B%5Csqrt%7B6%7D%20%5Csqrt%7B2%7D%20%20%7D%20%5D)

The stress is mathematically represented as



