Answer: Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
on one side of the equation and solve by plugging your values
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
Explanation:
11.19%. This should be right. I have no doubt that you will get it right.
Answer: B) metals, non-metals, metalloids
An example of a metal is iron. A non-metal example is oxygen, which is a gas at STP (standard temperature and pressure).
A metalloid is a bit of a mix between a metal and non-metal element. It's sorta like an element that has both properties of metals and non-metals, or it's in a murky gray area. An example of a metalloid would be silicon.
Answer:
Examples of Chemical Changes
Burning wood.
Souring milk.
Mixing acid and base.
Digesting food.
Cooking an egg.
Heating sugar to form caramel.
Baking a cake.
Rusting of iron.
Answer:
- The molar mass of the solute, in order to convert from moles of solute to grams of solute.
- The density of solution, to convert from volume of solution to mass of solution.
Explanation:
Hello,
In this case, since molarity is mathematically defined as the moles of solute divided by the volume of solution and the weight/weight percent as the mass of solute divided by the mass of solution, we need:
- The molar mass of the solute, in order to convert from moles of solute to grams of solute.
- The density of solution, to convert from volume of solution to mass of solution.
For instance, if a 1-M solution of HCl has a density of 1.125 g/mL, we can compute the w/w% as follows:
Whereas the first factor corresponds to the molar mass of HCl, the second one the conversion from L to mL of solution and the third one the density to express in terms of grams of solution.
Regards.