Answer: En estos grupos de los elementos de transición se encuentran las llamadas tierras raras, separadas del resto de elementos de la tabla, que pertenecen al grupo IIIB y se les conoce como lantánidos y actínidos.
Answer:
Cell Wall, Cell Membrane, Nucleus, Endoplasmic Reticulum (ER), and Ribosome.
Explanation:
Hopefully this helps :).
Partial pressure of gas A is 1.31 atm and that of gas B is 0.44 atm.
The partial pressure of a gas in a mixture can be calculated as
Pi = Xi x P
Where Pi is the partial pressure; Xi is mole fraction and P is the total pressure of the mixture.
Therefore we have Pa = Xa x P and Pb = Xb x P
Let us find Xa and Xb
Χa = mol a/ total moles = 2.50/(2.50+0.85) = 2.50/3.35 = 0.746
Xb = mol b/total moles = 0.85/(2.50+0.85) = 0.85/3.35 = 0.254
Total pressure P is given as 1.75 atm
Pa = Xa x P = 0.746 x 1.75 = 1.31atm
Partial pressure of gas A is 1.31 atm
Pb = Xb x P = 0.254 x 1.75 = 0.44atm
Partial pressure of gas B is 0.44 atm.
Learn more about Partial pressure here:
brainly.com/question/15302032
#SPJ4
2H₂(g) + O₂(g) ⇄ 2H₂O(l)
Δngas = 0 - (2 +1)
= -3
<h3>
What is Δngas?</h3>
The number of moles of gas that move from the reactant side to the product side is denoted by the symbol ∆n or delta n in this equation.
Once more, n represents the growth in the number of gaseous molecules the equilibrium equation can represent. When there are exactly the same number of gaseous molecules in the system, n = 0, Kp = Kc, and both equilibrium constants are dimensionless.
<h3>
Definition of equilibrium</h3>
When a chemical reaction does not completely transform all reactants into products, equilibrium occurs. Many chemical processes eventually reach a state of balance or dynamic equilibrium where both reactants and products are present.
Learn more about Equilibrium
brainly.com/question/11336012
#SPJ4
The number of grams of NaOH that are needed to make 500 ml of 2.5 M NaOH solution
calculate the number of moles =molarity x volume/1000
= 2.5 x 500/1000 = 1.25 moles
mass = moles x molar mass of NaOH
= 1.25 x40= 50 grams of NaOH