Do swimming which make Newtons Third Law
Answer:
See explaination
Explanation:
please kindly see attachment for the step by step solution of the given problem.
Answer: The electric field is: a) r<a , E0=; b) a<r<b E=ρ (r-a)/εo;
c) r>b E=ρ b (b-a)/r*εo
Explanation: In order to solve this problem we have to use the Gaussian law in diffrengios regions.
As we know,
∫E.dr= Qinside/εo
For r<a --->Qinside=0 then E=0
for a<r<b er have
E*2π*r*L= Q inside/εo in this case Qinside= ρ.Vol=ρ*2*π*r*(r-a)*L
E*2π*r*L =ρ*2*π*r* (r-a)*L/εo
E=ρ*(r-a)/εo
Finally for r>b
E*2π*r*L =ρ*2*π*b* (b-a)*L/εo
E=ρ*b* (b-a)*/r*εo
Answer:
66.4 N
Explanation:
From Newton's second law, <em>F </em>=<em> ma</em>
where <em>F</em> is the force, <em>m</em> is the mass and <em>a</em> is the acceleration.
Because the object has acceleration in two directions and the mass is constant, the force will be in two directions. The component of the forces are:


The magnitude of the resultant force is given by


Answer:
The work done by the bird is 0.762 J
Explanation:
Given;
force applied by the bird, f = 10 N
distance the bird moved the worm, d = 3 inches = 0.0762 m
The work done by the bird is given by;
W = F x d
where;
W is the work done by the bird
d is the distance the bird moved the load
Substitute the given values and estimate the work done by the bird;
W = 10 x 0.0762
W = 0.762 J
Therefore, the work done by the bird is 0.762 J