Source localization in ocean acoustics is posed as a machine learning problem in which data-driven methods learn source ranges directly from observed acoustic data: True.
<h3>What is machine learning?</h3>
Machine learning (ML) is also known as artificial intelligence (AI) and it can be defined as a subfield in computer science which typically focuses on the use of computer algorithms, data-driven techniques (methods) and technologies to develop a smart computer-controlled robot that has the ability to automatically perform and manage tasks that are exclusively meant for humans or solved by using human intelligence.
In Machine learning (ML), data-driven techniques (methods) are used to learn source ranges directly from observed acoustic data in a bid to proffer solutions to source localization in ocean acoustics.
In conclusion, a normalized sample covariance matrix (SCM) is constructed and used as the input, especially after pre-processing the pressure that's received by a vertical linear array in Machine learning (ML).
Read more on machine learning here: brainly.com/question/25523571
#SPJ1
We begin by noting that the angle of incidence is the one that's taken with respect to the normal to the surface in question. In this case the angle of incidence is 30. The material is Flint Glass according to the original question. The refractive indez of air n1=1, the refractive index of red in flint glass is nred=1.57, finally for violet in the glass medium is nviolet=1.60. Snell's Law dictates:

Where

differs for each wavelenght, that means violet and red will have different refractive indices in the glass.
In the second figure provided details are given on which are the angles in question,

is the distance between both rays.


At what distance d from the incidence normal will the beams land at the bottom?
For violet we have:

For red we have:

We finally have:
Answer:
Electric field due to two charges is given as

Explanation:
As we know that two charges are opposite in nature
So the electric field at the mid point of two charges will add together
so the net field is given as

now we have


now we have


This means that there is same current flow in both the circuit, or the circuit one has twice the power of circuit two.
According to ohm's law, the resistance is given as
I=V/R
Since the circuit one has twice the voltage, and resistance
I1=I2